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Paris-Saclay, Gif-sur-Yvette, France16

8Institute of Geography, Russian Academy of Sciences, Moscow, Russia17

9ING PAN - Institute of Geological Sciences Polish Academy of Sciences, Research Center in Kraków,18

Biogeosystem Modelling Group, Kraków, Poland19

10Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA20

11Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia21

12NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Norway22

13Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan,23

China24

14Climate & Global Dynamics Laboratory, National Center for Atmospheric Research, USA25

15School of Ocean and Earth Science, University of Southampton, UK26

16Bjerknes Centre for Climate Research and Department of Earth Science, University of Bergen, Norway27

*corresponding author: Sebastian Steinig (sebastian.steinig@bristol.ac.uk)28

ABSTRACT29

Paleoclimate model simulations provide reference data to help interpret the geological record and offer a unique opportunity
to evaluate the performance of current models under diverse boundary conditions. Here, we present a dataset of 35 climate
model simulations of the warm early Eocene Climatic Optimum (EECO; ∼ 50 million years ago) and corresponding preindustrial
reference experiments. To streamline the use of the data, we apply standardised naming conventions and quality checks across
eight modelling groups that have carried out coordinated simulations as part of the Deep-Time Model Intercomparison Project
(DeepMIP). Gridded model fields can be downloaded from an online repository or accessed through a new web application that
provides interactive data exploration. Local model data can be extracted in CSV format or visualised online for streamlined
model-data comparisons. Additionally, processing and visualisation code templates may serve as a starting point for advanced
analysis. The dataset and online platform aim to simplify accessing and handling complex data, prevent common processing
issues, and facilitate the sharing of climate model data across disciplines.

30

Background & Summary31

Past climate changes provide an opportunity to better understand how key components of the climate system might change under32

anthropogenic greenhouse gas emissions and thus help constrain future climate change1. Comparisons with paleoclimate data33



allow us to evaluate climate models under atmospheric CO2 scenarios similar to those possible in the near future. Furthermore,34

these paleoclimate model simulations provide global, physically consistent reference data to support the interpretation of35

paleoclimatic data across a wide range of disciplines, e.g. in geology, biology, and geochemistry.36

37

One of the most well-studied deep-time intervals with respect to model-data comparison is the early Eocene Climatic38

Optimum (EECO; ∼53.3 to 49.1 million years ago2) as it provides an analogue for future very high emission scenarios3. It was39

characterised by atmospheric CO2 concentrations of ∼1,500 ppmv4 and global mean surface temperatures (GMSTs) 10 to 1640

°C warmer than pre-industrial5. Several modelling studies have focused on improving our understanding of the mechanisms and41

implications of EECO warmth6–10 and ultimately motivated the formulation of the Eocene Modelling Intercomparison Project42

(EoMIP)11. While limited due to its opportunistic design, EoMIP nonetheless highlighted the possibility of using multi-model43

ensembles to systematically assess model-model and model-data differences in our understanding of Eocene climate.44

45

Building on this potential, DeepMIP – the Deep-Time Model Intercomparison Project – was designed to provide a consistent46

framework to carry out coordinated EECO model experiments12. Eight modelling groups performed a total of 35 model47

simulations using the same paleogeographic and vegetation boundary conditions at a range of atmospheric CO2 concentrations48

(Table 1). These new simulations showed more consistent global mean surface temperatures across the ensemble and larger49

climate sensitivities compared to the EoMIP results13. The coordinated experiment set-up allowed a separation of the relative50

influence of changes in CO2 concentrations and non-CO2 boundary conditions (i.e. removal of land ice and prescribed51

vegetation) on the simulated surface temperatures. Non-CO2 boundary conditions alone lead to 3-5 °C overall warming and52

contribute substantially to the reduced meridional temperature gradient, while higher CO2 levels drive global mean warming53

due to decreases in atmospheric emissivity. Importantly, three models (CESM1.2-CAM5, GFDL-CM2.1 and NorESM1-F)54

were able to produce absolute GMSTs and reduced meridional temperature gradients consistent with the geological record at55

CO2 concentrations within the reported range of EECO reconstructions (1170 to 2490 ppmv14).56

57

The DeepMIP-Eocene ensemble has already been used in multiple studies, analysing specific aspects of the Eocene58

climate in more detail, e.g. the meridional temperature gradient15, the surface to deep ocean temperature relationship16,59

ocean circulation17, sea ice18, hydroclimate19–21, and the impact of mountains22, 23. We anticipate continued interest in the60

DeepMIP-Eocene model data, both for model intercomparisons and for model-data syntheses, and aim to document the61
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design of the dataset and streamline access to improve future reuse of the data. Although the use of large model ensembles62

is helpful in quantifying the influence of uncertainties in boundary conditions and limitations in model performance on the63

simulated Eocene climate, it also presents a technical hurdle in accessing and fully utilising the available data. The use of64

model-specific data standards, post-processing workflows and variable naming schemes can make the analysis and comparison65

of multi-model ensembles a tedious process or even lead to processing errors. The need for significant data processing expertise66

can therefore limit the benefits and wider use of these important data, particularly in non-modelling paleoclimatology disciplines.67

68

Here, we build on the DeepMIP framework to address these issues and present standardised, quality-checked EECO model69

output to facilitate multi-model processing and analysis, both for model intercomparisons and model-data comparisons. We70

have reprocessed the output of a total of 26 EECO simulations at CO2 concentrations between ×1 and ×9 pre-industrial levels,71

together with their nine pre-industrial reference experiments, to generate a dataset of common climate variables with consistent72

temporal averaging, variable names and units across the ensemble. We follow the CMIP convention for variable names and73

units as closely as possible to take advantage of existing processing workflows, and use the ensemble spread to quantify the74

internal consistency of the output fields.75

76

We provide two complementary ways of accessing the dataset, tailored to the most likely future use cases. First, the entire77

dataset is stored as global, gridded netCDF (network Common Data Form) files in the Centre for Environmental Data Analysis78

(CEDA) Archive and can be downloaded as individual files or in batch mode24. Combined with the consistent DeepMIP naming79

convention, this provides a more traditional, scriptable starting point for further analysis. This approach shares the goals of80

other existing infrastructure projects for sharing climate model data such as the Earth System Grid Federation (ESGF)25, but the81

limited scope and overall much smaller file sizes of this dataset allow us to use centralised, rather than distributed, data storage82

for greater user convenience. Second, we present an interactive web application to facilitate model-data comparisons of EECO83

surface temperatures and precipitation. This is a very common use case for paleoclimate model data, but also involves multiple84

processing steps and potential pitfalls, especially when working with a large model ensemble. Modern web technologies85

provide the opportunity for intuitive, browser-based access to complex data and, therefore, the possibility to assist users in86

extracting subsets of relevant information for them. Recent examples include the Interactive Atlas26 of the Intergovernmental87

Panel on Climate Change (https://interactive-atlas.ipcc.ch, last access: 26 June 2024) and the Copernicus Interactive Climate88

Atlas created by the Copernicus Climate Change Service (https://atlas.climate.copernicus.eu/atlas, last access: 26 June 2024).89
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The DeepMIP web application follows a similar approach by providing intuitive data access and custom workflows to simplify90

common model-data comparison tasks. The web application automatically calculates paleolocations for a single site or a list of91

present-day locations, extracts the corresponding model data from the various model grids and plots a summary of the results.92

The resulting data can be exported for further offline analysis, while the underlying Python code can be used as a starting point93

for custom analysis.94

95

The dataset and tools provided are designed to enable data access for non-programmers and to streamline analysis for96

more advanced users to routinely evaluate existing and emerging paleoclimate data against the full DeepMIP-Eocene model97

ensemble. This will help to bridge the gap between modelling and data communities to ultimately advance our understanding of98

early Eocene climate and could potentially serve as a reference framework for similar projects of other geological time periods99

in the future.100

Methods101

DeepMIP-Eocene experiments102

All EECO simulations that follow the DeepMIP-Eocene experimental design protocol12 and are completed by September103

2023 form the input data for version 1.0 of the dataset (Table 1). These simulations are identical to those described in the104

DeepMIP overview paper13, with the exception of the new MIROC ×1 and ×2 experiments. The DeepMIP framework105

provides standardised model boundary conditions and experimental designs to allow a coordinated model intercomparison106

of the simulation results. All groups have used one of the two reference paleogeographic reconstructions27, 28(Fig. 1a-b)107

interpolated to their respective model grids. The main difference between the two available paleogeographies is the choice in the108

applied rotation reference frame leading to slight differences in the relative positions of individual plates (Fig. 1c). Prescribed109

vegetation and river runoff follow a published reconstruction27, while globally homogeneous soil parameters based on the110

global mean of the respective pre-industrial simulation were used. All groups provided a pre-industrial reference simulation111

and performed a series of EECO experiments, differing only in the concentration of atmospheric CO2, summarised in Table 2.112

Other greenhouse gas concentrations and the solar constant were held constant at their pre-industrial levels.113

114

A complete overview of the modelling framework is given in the DeepMIP experimental design paper12, and detailed115

descriptions of its implementation in the individual models can be found in the analysis of the large-scale climatic features13.116
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We also provide a full description of each model setup based on their published method sections13 as a README file in the117

dataset itself. This is intended to make the downloaded files self-describing and to allow dynamic addition of new experiments118

and models in the future. In the following, for each model included in version 1.0 of the dataset, we provide a brief summary119

of the initialisation and spin-up strategies, as this step required individual decisions by each modelling group. The DeepMIP120

experimental design provides an idealised equation for initialising the ocean temperatures as:121

T [◦C] =


(D−z

D ×A× cos(φ)
)
+B if z ≤ D m

B if z > D m

(1)

where φ is latitude, and z is ocean depth. The parameters A, B and D are specified in the experimental design as 25, 15 and122

5000, respectively12. The resulting warm ocean temperatures caused numerical problems in some model spin-ups and have123

therefore been modified for individual models. An overview of the parameters used for each model is given in Table 3. Any124

other deviations for the model initialisation are listed below.125

CESM126

Ocean temperatures and salinities in all Eocene simulations are initialised from the same Palaeocene–Eocene Thermal Maximum127

(PETM; ∼55 million years ago) experiment using a previous version of CESM29, 30. The ×1 simulation was integrated for a128

further 2600 years, while all other experiments were run for 2000 years. The mean top of the atmosphere (TOA) imbalance over129

the last 100 model years for the PI, ×1, ×3, ×6 and ×9 experiments are -0.05, -0.25, -0.32, 0.34 and 0.64 Wm−2, respectively.130

COSMOS131

The ×3 integration was initialised with a homogeneous temperature and salinity of 10 °C and 34.7 psu, respectively, and132

integrated for an initial 1000 years, after which the ×1 and ×4 simulations were branched. After an initial 8000 years with133

transient orbital parameters, a constant, pre-industrial orbital configuration was used for the final 1500 years of all simulations.134

Instead of using the proposed river routing scheme27, the simulations use a hydrological discharge model that follows the model135

orography31. The mean TOA imbalance over the last 100 model years for the PI, ×1, ×3 and ×4 experiments are 1.75, 1.91,136

1.78, and 1.95 Wm−2, respectively.137
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GFDL138

The ×1, ×2, ×3, and ×4 simulations were started with a globally homogeneous salinity of 34.7 psu and a slightly cooler139

version of the DeepMIP temperature equation (Eq. (1); Table 3). After 1500 and 2000 years of integration, an acceleration140

technique was applied. Specifically, the linear temperature trends of the last 100 years for each model level below 500 m141

calculated and the temperature then extrapolated by a 1000 years following this trend. After the second application of this142

technique at year 2000, the model was run out normally for a further 4000 years for a total of 6000 years. The ×6 simulation143

was initialised with a globally uniform temperature of 19.32 °C and continously integrated for 6000 years. The mean TOA144

imbalance over the last 100 model years for the PI, ×1, ×2, ×3, ×4 and ×6 experiments are 0.31, 0.10, -0.08, -0.14, -0.19, and145

-0.28 Wm−2, respectively.146

HadCM3147

Initial ocean temperatures for HadCM3BL were derived from an idealised temperature profile with lowered, CO2 dependent148

deep ocean temperatures based on previous Eocene simulations. HadCM3B experiments were branched from the respective149

HadCM3BL simulations after 4400 to 4900 years and integrated for a further 2950 years. Multiple ocean gateways in the150

original paleogeography were widened to allow unrestricted ocean circulation and to guarantee the same gateway widths on151

both the low and high-resolution ocean grids of HadCM3BL and HadCM3B, respectively. In addition, maximum water depths152

in parts of the Arctic Ocean were reduced to improve numerical stability. The mean TOA imbalance per century averaged153

over the last 50 model years for the PI, ×1, ×2 and ×3 experiments for HadCM3B are -0.04, -0.02, -0.08 and -0.08 Wm−2,154

respectively.155

INMCM156

The ocean temperature and salinity in the ×6 simulation follow the idealised equations of the DeepMIP protocol, but with157

equatorial surface temperatures lowered by 5 °C (Eq. (1); Table 3). The simulation was integrated for a total of 1150 years. The158

mean TOA imbalance over the last 100 model years for the PI and ×6 experiments are 4.37 and 2.87 Wm−2, respectively.159

IPSL160

A modified version of Eq. (1) with overall reduced subsurface temperatures (Table 3) and a globally homogeneous salinity of161

34.7 psu were used to initialise the ×3 simulation. The ×1.5 simulation is branched from the ×3 experiment after 1500 years.162

Both simulations are run for a total of 4000 years. The ocean bathymetry around individual ocean straits has been manually163

adjusted to guarantee the minimum gateway width necessary to allow throughflow. The mean TOA imbalance over the last 100164
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model years for the PI, ×1.5 and ×3 experiments are 0.08, 0.59 and 0.76 Wm−2, respectively.165

MIROC166

All three simulations have been initialised with a modified version of the idealised DeepMIP temperature equation, with ocean167

temperatures globally reduced by 15 °C (Eq. (1); Table 3), and integrated for 5000 model years. The ×1 and ×2 experiments168

are new and have not been included in the DeepMIP overview paper13. The mean TOA imbalance over the last 100 model169

years for the PI, ×1, ×2 and ×3 experiments are 0.96, 0.79, 0.91 and 0.96 Wm−2, respectively.170

NorESM171

Initial ocean temperatures for the ×2 simulation were used from a previous NorESM-L simulation32, while salinities were set to172

25.5 psu in the Arctic and 34.5 elsewhere. The ×4 simulation was branched off after 100 model years, and both simulations have173

been run for a further 2000 years. The NorESM simulations were performed with a different paleogeographic reconstruction174

than the rest of the DeepMIP ensemble (Table 1). The mean TOA imbalance per century at the end of the PI, ×2 and ×4175

experiments are -0.02, 0.03 and 0.24 Wm−2, respectively. Note that the PI imbalance is calculated over the last 1000 years,176

while the Eocene values are averaged over the last 100 years.177

Data processing178

We use the raw output of the last 100 years of each of the 35 model simulations as input for our post-processing. For each179

variable, we generate up to three netCDF output files to facilitate common analysis workflows. We always produce a mean file180

representing either the monthly mean climatology or the annual mean averaged over the last 100 model years, depending on the181

temporal resolution of the model output. In case of monthly mean output data, the std file contains the standard deviation over182

the same averaging period for each month of the year and can be used for significance testing. Where feasible, we also store the183

full monthly mean output of the last 100 model years as a time_series file to investigate temporal trends or interannual184

variability.185

186

Alongside this standard output, we provide a generic script to interpolate model fields from their native grids to a common187

resolution for model intercomparisons. The processing workflow requires a local installation of the Climate Data Operator188

(CDO) software33 for bilinear or nearest-neighbour interpolation for atmosphere and ocean variables, respectively. Example189

output for commonly used variables (i.e., near-surface air temperature, sea surface temperature and total precipitation) on a190

common 1°×1°grid is included in the dataset and can be directly used for analysis or to verify results of any local postprocessing.191
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The processing script is distributed as part the dataset (see Data Records section).192

Naming convention193

We employ a consistent naming convention for variables, directories, and file names across all models to simplify the comparison194

of different models and to allow a scripted analysis of the entire dataset. The list of output variables is an extended version195

of those proposed in the DeepMIP experimental design12 and is shown in Tables 4-5. Variable names, units and signs of196

fluxes follow the naming convention of the Coupled Model Intercomparison Project 6 (CMIP6) data request (https://wcrp-197

cmip.github.io/WGCM_Infrastructure_Panel/CMIP6/data_request.html, last access: 26 June 2024). Consistent standard names,198

long names and global attributes are directly added to the netCDF files following the Climate and Forecast metadata conventions199

(CF34) in version 1.8 (http://cfconventions.org, last access: 26 June 2024). All netCDF file have been automatically tested for200

CF-compliance with the cf-checker utility (https://github.com/cedadev/cf-checker, last access: 26 June 2024) developed by201

the UK Met Office and the NCAS Computational Modelling Services (NCAS-CMS). Following the CMIP and CF community202

standards will both increase user familiarity with the new dataset and will allow the integration into existing analysis workflows203

and software. Each output variable is stored in a separate file according to the following structure:204

directory = deepmip-eocene-p1/<Family>/<Model>/<Experiment>/<Version>/<Averaging>/205

206

filename = <Variable>_<Model>_<Experiment>_<Version>.<Statistic>.nc207

where:208

• <Family>, <Model> and <Experiment> are listed in Table 1 and Table 2, respectively209

• <Variable> represents the first column in Tables 4-5210

• <Statistic> is either mean (1 or 12 timsteps), std (12 timsteps), time_series (1200 timsteps) or omitted for211

the time-independent boundary conditions212

• the smaller mean and std files are stored in the <Averaging>=climatology directory and are separated from213

the larger time_series files in the <Averaging>=time_series directory to enable more granular download214

options215

Storing all relevant information in the file name itself also allows new phases of coordinated DeepMIP simulations to be216

integrated into a single dataset in the future.217
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Data Records218

The full dataset has been deposited in the CEDA Archive, the UK national data centre for atmospheric and earth observation219

research24. This dataset contains the following types of files:220

• model data: The directory deepmip-eocene-p1 contains all processed model output in CF compliant netCDF221

format35, a self-describing community standard for storing gridded simulation data, with a total file size of 168.0 GB.222

Directory and file structure follow the DeepMIP naming convention described above.223

• model READMEs: Each <Family> top-level directory contains a single <Family>_README.md file that contains224

detailed information about the model, the simulation setup, and naming convention. This ensures the downloaded dataset225

is sufficiently self-described and allows the addition of new models and simulation results in the future.226

In addition, the code of the web application36 and a collection of scripts and metadata to interact with the dataset37 are227

deposited in separate Zenodo repositories. The latter includes a collection of Python code to interpolate model data to a228

common grid (regrid_deepmip_data.py), recreate the validation tables of available data (plot_z-scores.py) and229

Python dictionaries containing available DeepMIP models, experiments and variables to support scripted analysis of the dataset230

(deepmip-eocene_dictionaries_v1.py).231

Technical Validation232

An earlier version of the dataset has already been used in a number of publications13, 15, 16, 18–23 to assess the scientific validity

of the model simulations, both in terms of model-model and model-data comparisons. In this section, we verify the internal

consistency of the dataset, ensuring that the naming convention has been applied correctly and that the resulting variable names,

units and fluxes are consistent across all models. To do this, we automatically parse all mean and time_series files in

the dataset for any given experiment, interpolate them to a common grid, calculate the global mean, minimum and maximum

values and compare these values across all models. We use annual mean fields for the validation of mean files and the last 12

available months of the time_series files. For variables with multiple vertical levels (see Tables 4-5), we select the vertical

index nearest to the 500 hPa pressure level or 1000 m depth for atmospheric and ocean data, respectively. Example tables for

atmospheric and ocean mean variables from the ×3 simulations are shown in Fig. 2 and Fig. 3, tables for all other experiments

as well as for time_series files are uploaded to the online dataset and web application. This testing procedure simulates a

standard analysis workflow and is able to detect any deviations from the expected DeepMIP naming convention, while the
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resulting tables provide a visual overview of the available model fields for each experiment. We further calculate the median

and standard deviation for each variable and metric across all available models (i.e. for each row in the table) to flag potential

outliers that may arise due to inconsistent units or different directions of energy or mass fluxes. For this, we calculate a z-score

for each model, variable and statistic which quantifies the number of standard deviations an individual model statistic is above

or below the ensemble median. We use the ensemble median instead of the mean as the reference point to reduce the influence

of potential outliers in our small sample sizes and calculate the adjusted z-scores as:

z =
x−M

σ
(2)

where z is the computed z-score, x is the individual model value, M is the median across all available models for the respective233

variable and statistic (i.e., across each table row), and σ is the standard deviation across the ensemble. A z-score > 3 is234

commonly used as a cut-off to identify outliers in a distribution. Due to the small sample sizes (N ≤ 9) the z-score threshold235

was not used to exclude any data from the dataset, but rather to find and resolve inconsistencies in the data processing between236

the models. For this, the background of each cell in Fig. 2 and Fig. 3 has been coloured by their computed z-score to visually237

identify model results substantially different from the ensemble median. Note that all modelling groups have performed slightly238

different sets of simulations (Table 1) and not all models provide all requested output variables. These fields are indicated by239

gray "nan" cells in the overviw tables. For example, INM and NorESM did not perform a ×3 experiment and are therfore240

not included in Fig. 2 and Fig. 3. In the final dataset, all available model fields are within ± 3 standard deviations around241

the respective ensemble median, although we note that the small sample sizes allow only an indicative analysis. The Python242

processing code is included in the online dataset (see Data Records section) and can be used to develop a custom analysis243

workflow or to validate any regridding and global averaging performed by the user.244

Usage Notes245

We present two primary routes to access the dataset, either via downloading the netCDF files for local processing or via an246

interactive website for online model-data comparisons.247

netCDF repository248

First, processed netCDF files for all simulations are available from the CEDA Archive24. The full directory structure can be249

accessed via the browser and files can be downloaded via HTTP, Wget, FTP or OPeNDAP. This allows easy access to the data250
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via the browser, as well as scriptable interfaces for bulk downloading. The OPeNDAP (Open-source Project for a Network Data251

Access Protocol) protocol allows the remote subsetting and exploration of datasets directly in Python, R, IDL, and Matlab.252

The CEDA Archive website (https://help.ceda.ac.uk/article/99-download-data-from-ceda-archives; last access: 26 June 2024)253

provides an up-to-date overview of all available access options.254

255

Interactive web application256

Second, simulated surface temperatures and precipitation from any location can be extracted, visualised and downloaded at257

https://data.deepmip.org. This allows model-data comparisons via a simple user interface without the need to download the258

netCDF files locally. The website is designed to extract surface temperature and precipitation for any user-defined location259

from all available model simulations and either visualise the results or download them for offline use. All processing code is260

written in Python and bundled into a web application via the Streamlit library (https://streamlit.io; last access: 26 June 2024).261

The code makes full use of the naming conventions described above and is therefore general enough to serve as a template for262

further in-depth analysis. The sidebar of the web application can be used to choose between three different analysis pages:263

1. Extract local model data: Finds the model data closest to a user-specified site (see example in Fig. 4). The minimum264

inputs are the modern location of the site and the variable of interest (either near-surface air temperature, sea surface265

temperature, or total precipitation). The application will automatically reconstruct the site’s EECO paleo-position on both266

the mantle27 and paleomagnetic28 reference frames and extract the respective monthly and annual mean simulation data267

from the closest grid point for all models in the dataset. Model data is interpolated to a common 1°×1°grid (see Data268

processing section for details) prior to the data selection to eliminate the influence of different model resolutions on the269

results. In the end, the ensemble means for each experiment are calculated and the results are listed in an interactive table.270

Data can be downloaded in CSV, Excel or JSON format for direct import into spreadsheets for further offline analysis.271

The extraction can be performed for a single site or a list of locations and all sites from the DeepMIP proxy dataset2272

are pre-loaded and available for comparison with the simulation results. Furthermore, the underlying Python functions273

get_paleo_locations() and get_model_point_data() are available in the deepmip_modules.py file274

of the application repository for reuse in any custom analysis. The get_paleo_locations() function uses the275

paleolocation lookup fields provided in the experimental design paper12 to find the respective early Eocene locations276

for a list of modern latitude/longitude pairs, using both the mantle27 and paleomagnetic28 reference frames. Results are277
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saved in a Pandas DataFrame which can be directly passed to get_model_point_data() to extract the nearest278

model data for all reconstructed locations.279

2. Plot local model data: Visualises the extracted results and optionally compares them to proxy reconstructions (see280

example in Fig. 5). Available visualisations include line plots of the annual cycle at the user-specified location, grouped281

by the various DeepMIP CO2 levels (Fig. 5a), and a scatter plot of all simulated annual mean values against the respective282

GMSTs or CO2 concentrations of the model simulations. (Fig. 5b). The latter plot type can be useful to compare the283

sensitivity of the model results at the local site against global climate signals. The simulated monthly and annual mean284

model results can be visually compared against a local proxy reconstruction, either by manually specifying the mean and285

standard deviation of the proxy data or by loading the respective values for locations from the DeepMIP proxy dataset2.286

The user can zoom and pan within the interactive figures and download them in PNG and SVG format.287

3. Map sites and boundary conditions: Plots paleogeographic maps of the chosen site. The user can choose between a288

global map indicating the location of the study site or regional maps of the bathymetry, orography and land-sea mask on289

the various native model grids (Fig. 6). The latter can help with the interpretation of the model-data comparison result,290

e.g. by visualising local grid resolutions and associated intermodel differences in the representation of mountain ranges291

or ocean gateways.292

How to cite the dataset293

This Data Descriptor paper should be cited whenever any netCDF files from the dataset or results from the web application are294

reused in a publication. In addition, the user might want to cite the previously published overview of simulated large-scale295

climate features13 or the DeepMIP-Eocene experimental design12, as appropriate.296

Code availability297

Processing code to interpolate model fields and to create the validation overview tables is available via Zenodo37. The code for298

the web application is deposited in a separate Zenodo repository36.299

References300

1. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701, 10.1126/science.aay3701 (2020).301

12/24

10.1126/science.aay3701


2. Hollis, C. J. et al. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest302

Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model. Dev.303

12, 3149–3206, 10.5194/gmd-12-3149-2019 (2019). Publisher: Copernicus GmbH.304

3. Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. 115,305

13288–13293, 10.1073/pnas.1809600115 (2018).306

4. Rae, J. W. et al. Atmospheric CO 2 over the Past 66 Million Years from Marine Archives. Annu. Rev. Earth Planet. Sci. 49,307

609–641, 10.1146/annurev-earth-082420-063026 (2021).308

5. Inglis, G. N. et al. Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO),309

Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Clim. Past 16, 1953–1968, 10.5194/cp-16-1953-2020310

(2020).311

6. Heinemann, M., Jungclaus, J. H. & Marotzke, J. Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM.312

Clim. Past 5, 785–802, 10.5194/cp-5-785-2009 (2009).313

7. Roberts, C. D., LeGrande, A. N. & Tripati, A. K. Climate sensitivity to Arctic seaway restriction during the early Paleogene.314

Earth Planet. Sci. Lett. 286, 576–585, 10.1016/j.epsl.2009.07.026 (2009).315

8. Winguth, A., Shellito, C., Shields, C. & Winguth, C. Climate Response at the Paleocene–Eocene Thermal Maximum to316

Greenhouse Gas Forcing—A Model Study with CCSM3. J. Clim. 23, 2562–2584, 10.1175/2009JCLI3113.1 (2010).317

9. Lunt, D. J. et al. CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate318

destabilization. Geology 38, 875–878, 10.1130/G31184.1 (2010).319

10. Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Clim. Past 7, 603–633, 10.5194/320

cp-7-603-2011 (2011).321

11. Lunt, D. J. et al. A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations:322

EoMIP. Clim. Past 8, 1717–1736, 10.5194/cp-8-1717-2012 (2012). ISBN: 1814-9340.323

12. Lunt, D. J. et al. The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM,324

and pre-PETM (version 1.0). Geosci. Model. Dev. 10, 889–901, 10.5194/gmd-10-889-2017 (2017).325

13. Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features326

and comparison with proxy data. Clim. Past 17, 203–227, 10.5194/cp-17-203-2021 (2021).327

13/24

10.5194/gmd-12-3149-2019
10.1073/pnas.1809600115
10.1146/annurev-earth-082420-063026
10.5194/cp-16-1953-2020
10.5194/cp-5-785-2009
10.1016/j.epsl.2009.07.026
10.1175/2009JCLI3113.1
10.1130/G31184.1
10.5194/cp-7-603-2011
10.5194/cp-7-603-2011
10.5194/cp-7-603-2011
10.5194/cp-8-1717-2012
10.5194/gmd-10-889-2017
10.5194/cp-17-203-2021


14. Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun.328

11, 4436, 10.1038/s41467-020-17887-x (2020).329

15. Kelemen, F. D. et al. Meridional Heat Transport in the DeepMIP Eocene Ensemble: Non-CO 2 and CO 2 Effects.330

Paleoceanogr. Paleoclimatology 38, e2022PA004607, 10.1029/2022PA004607 (2023).331

16. Goudsmit-Harzevoort, B. et al. The Relationship Between the Global Mean Deep-Sea and Surface Temperature During the332

Early Eocene. Paleoceanogr. Paleoclimatology 38, e2022PA004532, 10.1029/2022PA004532 (2023).333

17. Zhang, Y. et al. Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric334

Forcing and Strait Geometry. Paleoceanogr. Paleoclimatology 37, 10.1029/2021PA004329 (2022). _eprint:335

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021PA004329.336

18. Niezgodzki, I. et al. Simulation of Arctic sea ice within the DeepMIP Eocene ensemble: Thresholds, seasonality and337

factors controlling sea ice development. Glob. Planet. Chang. 214, 103848, 10.1016/j.gloplacha.2022.103848 (2022).338

19. Williams, C. J. R. et al. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanogr.339

Paleoclimatology 37, 10.1029/2022PA004419 (2022).340

20. Reichgelt, T. et al. Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanogr.341

Paleoclimatology 37, 10.1029/2022PA004418 (2022).342

21. Cramwinckel, M. J. et al. Global and Zonal-Mean Hydrological Response to Early Eocene Warmth. Paleoceanogr.343

Paleoclimatology 38, e2022PA004542, 10.1029/2022PA004542 (2023).344

22. Kad, P., Blau, M. T., Ha, K.-J. & Zhu, J. Elevation-dependent temperature response in early Eocene using paleoclimate345

model experiment. Environ. Res. Lett. 17, 114038, 10.1088/1748-9326/ac9c74 (2022). Publisher: IOP Publishing.346

23. Zhang, Z. et al. Impact of Mountains in Southern China on the Eocene Climates of East Asia. J. Geophys. Res. Atmospheres347

127, 10.1029/2022JD036510 (2022). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022JD036510.348

24. Steinig, S. et al. Deep-Time Model Intercomparison Project (DeepMIP) Eocene model data version 1.0, 10.5285/349

95AA41439D564756950F89921B6EF215 (2024).350

25. Cinquini, L. et al. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data.351

Futur. Gener. Comput. Syst. 36, 400–417, 10.1016/j.future.2013.07.002 (2014).352

14/24

10.1038/s41467-020-17887-x
10.1029/2022PA004607
10.1029/2022PA004532
10.1029/2021PA004329
10.1016/j.gloplacha.2022.103848
10.1029/2022PA004419
10.1029/2022PA004418
10.1029/2022PA004542
10.1088/1748-9326/ac9c74
10.1029/2022JD036510
10.5285/95AA41439D564756950F89921B6EF215
10.5285/95AA41439D564756950F89921B6EF215
10.5285/95AA41439D564756950F89921B6EF215
10.1016/j.future.2013.07.002


26. Iturbide, M. et al. Implementation of FAIR principles in the IPCC: the WGI AR6 Atlas repository. Sci. Data 9, 629,353

10.1038/s41597-022-01739-y (2022).354

27. Herold, N. et al. A suite of early Eocene (∼ 55 Ma) climate model boundary conditions. Geosci. Model. Dev. 7, 2077–2090,355

10.5194/gmd-7-2077-2014 (2014).356

28. Baatsen, M. et al. Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic.357

Clim. Past 12, 1635–1644, 10.5194/cp-12-1635-2016 (2016). Publisher: Copernicus GmbH.358

29. Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Philos.359

Transactions Royal Soc. A: Math. Phys. Eng. Sci. 371, 20130093, 10.1098/rsta.2013.0093 (2013). Publisher: Royal Society.360

30. Zhu, J., Poulsen, C. J. & Tierney, J. E. Simulation of Eocene extreme warmth and high climate sensitivity through cloud361

feedbacks. Sci. Adv. 1–11, 10.1126/sciadv.aax1874 (2019).362

31. Hagemann, S. & Dümenil, L. A parametrization of the lateral waterflow for the global scale. Clim. Dyn. 14, 17–31,363

10.1007/s003820050205 (1998). ISBN: 0930-7575.364

32. Zhang, Z. S. et al. Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model. Dev. 5, 523–533,365

10.5194/gmd-5-523-2012 (2012).366

33. Schulzweida, U. CDO User Guide, 10.5281/zenodo.7112925 (2022). Publisher: Zenodo.367

34. Hassell, D., Gregory, J., Blower, J., Lawrence, B. N. & Taylor, K. E. A data model of the Climate and Forecast368

metadata conventions (CF-1.6) with a software implementation (cf-python v2.1). Geosci. Model. Dev. 10, 4619–4646,369

10.5194/gmd-10-4619-2017 (2017).370

35. Rew, R. et al. Unidata NetCDF, 10.5065/D6H70CW6 (1989). Language: en Medium: application/java-371

archive,application/gzip,application/tar.372

36. Steinig, S. sebsteinig/deepmip-web-app: as published in DeepMIP data descriptor paper (Scientific Data), 10.5281/373

ZENODO.12706779 (2024).374

37. Steinig, S. sebsteinig/deepmip-helpers: as published in DeepMIP data descriptor paper (Scientific Data), 10.5281/375

ZENODO.12706785 (2024).376

38. Zhang, Y. et al. Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean. Clim. Past 16,377

1263–1283, 10.5194/cp-16-1263-2020 (2020).378

15/24

10.1038/s41597-022-01739-y
10.5194/gmd-7-2077-2014
10.5194/cp-12-1635-2016
10.1098/rsta.2013.0093
10.1126/sciadv.aax1874
10.1007/s003820050205
10.5194/gmd-5-523-2012
10.5281/zenodo.7112925
10.5194/gmd-10-4619-2017
10.5065/D6H70CW6
10.5281/ZENODO.12706779
10.5281/ZENODO.12706779
10.5281/ZENODO.12706779
10.5281/ZENODO.12706785
10.5281/ZENODO.12706785
10.5281/ZENODO.12706785
10.5194/cp-16-1263-2020


39. Zhang, Z. & Yan, Q. Pre-industrial and mid-Pliocene simulations with NorESM-L: AGCM simulations. Geosci. Model.379

Dev. 5, 1033–1043, 10.5194/gmd-5-1033-2012 (2012).380

Acknowledgements381

Sebastian Steinig and Daniel J. Lunt acknowledge funding from the NERC SWEET grant (grant no. NE/P01903X/1). Daniel J.382

Lunt also acknowledges funding from NERC DeepMIP grant (grant no. NE/N006828/1) and the ERC (“The greenhouse earth383

system” grant; T-GRES, project reference no. 340923, awarded to Rich Pancost). The CESM project is primarily supported by384

the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric385

Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. MIROC simulations386

were supported by funding from KAKENHI grant no. 17H06104 and 17H06323. Gordon. N Inglis was supported by a Royal387

Society Dorothy Hodgkin Fellowship (DHF\R1\191178) and NERC Large Grant (NE/V018388/1). Agatha de Boer and David388

Hutchinson acknowledge support from Swedish Research Council Grant 2016-03912 and FORMAS grant 2018-0162. The389

GFDL simulations were performed using resources from the Swedish National Infrastructure for Computing (SNIC) at the390

National Supercomputer Centre (NSC), partially funded by the Swedish Research Council Grant 2018-05973.391

Author contributions statement392

The model simulations and individual post-processing were carried out by JZ and CJP (CESM), IN and GK (COSMOS), DKH393

and AMdB (GFDL), SS and DJL (HadCM3), PM and EMV (INMCM), JBL and YD (IPSL), WLC and AAO (MIROC), and394

ZZ (NorESM). DE, GNI and ANM provided input on the web application and proxy data implementation. SS compiled the395

final dataset and developed the web application. SS wrote the manuscript with contributions from all authors.396

Competing interests397

The authors declare no competing interests relevant to this study.398

16/24

10.5194/gmd-5-1033-2012


Figures & Tables399

Table 1. Summary of the available DeepMIP-Eocene model simulations in version 1.0 of the dataset. Experiment short names
are defined in Table 2 and paleogeographies are shown in Fig. 1.

Model Family PI ×1 ×1.5 ×2 ×3 ×4 ×6 ×9 Geography Reference
CESM1.2-CAM5 CESM × × × × × 27 13, 30

COSMOS-landveg-r2413 COSMOS × × × × 27 13

GFDL-CM2.1 GFDL × × × × × × 27 13

HadCM3B-M2.1aN HadCM3 × × × × 27 13

HadCM3BL-M2.1aN HadCM3 × × × × 27 13

INM-CM4-8 INMCM × × 27 13

IPSLCM5A2 IPSL × × × 27 13, 38

MIROC4m MIROC × × × × 27 13

NorESM1-F NorESM × × × 28 13

Table 2. Overview of the DeepMIP-Eocene experiments included in version 1.0 of the dataset.

Experiment Name Short Name CO2 [ppmv] Geography
deepmip-eocene-p1-PI PI 280 modern
deepmip-eocene-p1-x1 x1 280 27 or28

deepmip-eocene-p1-x1.5 x1.5 420 27 or28

deepmip-eocene-p1-x2 x2 560 27 or28

deepmip-eocene-p1-x3 x3 840 27 or28

deepmip-eocene-p1-x4 x4 1120 27 or28

deepmip-eocene-p1-x6 x6 1680 27 or28

deepmip-eocene-p1-x9 x9 2520 27 or28

Table 3. Overview of initial ocean temperature strategies. Coefficients A, B and D refer to Eq. (1).

Model A B D Comment
CESM1.2-CAM5 – – – from previous CCSM3 simulation29

COSMOS-landveg-r2413 – – – 10 °C globally
GFDL-CM2.1 25 10 5000
HadCM3B-M2.1aN – – – branched from HadCM3BL
HadCM3BL-M2.1aN – – – custom equations13

INM-CM4-8 20 15 5000
IPSLCM5A2 25 10 1000
MIROC4m 25 0 5000
NorESM1-F – – – from previous NorESM-L simulation39

experimental design12 25 15 5000
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Table 4. Atmosphere output variables included in version 1.0 of the dataset. Naming conventions follow the CMIP6 data
request.

Name Long Name Units Dimensions
tas Near-Surface Air Temperature K time×lat×lon
ts Surface Temperature K time×lat×lon
pr Precipitation kg m−2 s−1 time×lat×lon
evspsbl Evaporation Including Sublimation and Transpiration kg m−2 s−1 time×lat×lon
hfls Surface Upward Latent Heat Flux W m−2 time×lat×lon
hfss Surface Upward Sensible Heat Flux W m−2 time×lat×lon
ps Surface Air Pressure Pa time×lat×lon
psl Sea Level Pressure Pa time×lat×lon
snc Snow Area Fraction % time×lat×lon
rsds Surface Downwelling Shortwave Radiation W m−2 time×lat×lon
rlds Surface Downwelling Longwave Radiation W m−2 time×lat×lon
rsus Surface Upwelling Shortwave Radiation W m−2 time×lat×lon
rlus Surface Upwelling Longwave Radiation W m−2 time×lat×lon
rsdt TOA Incident Shortwave Radiation W m−2 time×lat×lon
rsut TOA Outgoing Shortwave Radiation W m−2 time×lat×lon
rlut TOA Outgoing Longwave Radiation W m−2 time×lat×lon
rsdscs Surface Downwelling Clear-Sky Shortwave Radiation W m−2 time×lat×lon
rldscs Surface Downwelling Clear-Sky Longwave Radiation W m−2 time×lat×lon
rsuscs Surface Upwelling Clear-Sky Shortwave Radiation W m−2 time×lat×lon
rluscs Surface Upwelling Clear-Sky Longwave Radiation W m−2 time×lat×lon
rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m−2 time×lat×lon
rlutcs TOA Outgoing Clear-Sky Longwave Radiation W m−2 time×lat×lon
tauu Surface Downward Eastward Wind Stress Pa time×lat×lon
tauv Surface Downward Northward Wind Stress Pa time×lat×lon
uas Eastward Near-Surface Wind W m−2 time×lat×lon
vas Northward Near-Surface Wind W m−2 time×lat×lon
clh High Level Cloud Fraction % time×lat×lon
clm Mid Level Cloud Fraction % time×lat×lon
cll Low Level Cloud Fraction % time×lat×lon
clt Total Cloud Cover Percentage % time×lat×lon
cl Percentage Cloud Cover % level×time×lat×lon
hus Specific Humidity 1 level×time×lat×lon
ta Air Temperature K level×time×lat×lon
ua Eastward Wind m s−1 level×time×lat×lon
va Northward Wind m s−1 level×time×lat×lon
wap Omega (=dp/dt) Pa s−1 level×time×lat×lon
zg Geopotential Height m level×time×lat×lon
orog Surface Altitude m lat×lon
sftlf Percentage of the Grid Cell Occupied by Land % lat×lon
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Table 5. Ocean output variables included in version 1.0 of the dataset. Naming conventions follow the CMIP6 data request.

Name Long Name Units Dimensions
tos Sea Surface Temperature ◦C time×lat×lon
siconc Sea-Ice Area Percentage (Ocean Grid) % time×lat×lon
mlotst Ocean Mixed Layer Thickness Defined by Sigma T m time×lat×lon
zos Sea Surface Height Above Geoid m time×lat×lon
hfds Downward Heat Flux at Sea Water Surface W m−2 time×lat×lon
wfo Water Flux Into Sea Water kg m−2 s−1 time×lat×lon
tauuo Sea Water Surface Downward X Stress N m−2 time×lat×lon
tauvo Sea Water Surface Downward Y Stress N m−2 time×lat×lon
msftbarot Ocean Barotropic Mass Streamfunction kg s−1 time×lat×lon
msftmz Ocean Meridional Overturning Mass Streamfunction kg s−1 time×depth×lat
so Sea Water Salinity 0.001 depth×time×lat×lon
thetao Sea Water Potential Temperature ◦C depth×time×lat×lon
uo Sea Water X Velocity m s−1 depth×time×lat×lon
vo Sea Water Y Velocity m s−1 depth×time×lat×lon
wo Sea Water Vertical Velocity m s−1 depth×time×lat×lon
difvmo Ocean Vertical Momentum Diffusivity m−2 s−1 depth×time×lat×lon
difvtrbo Ocean Vertical Tracer Diffusivity Due to Background m−2 s−1 depth×time×lat×lon
deptho Sea Floor Depth Below Geoid m lat×lon
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Figure 1. Comparison of available DeepMIP-Eocene paleogeographic boundary conditions. Orography and bathymetry are
based on published reconstructions27 (a) and are also available based on a palaeomagnetic reference frame28 (b) with
differences in the relative positions of plates (c).
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min mean max min mean max min mean max min mean max min mean max min mean max min mean max min mean max min mean max min mean max

tas K 263.1 298.1 315.6 268.1 298.3 321.6 269.2 298.5 313.9 261.2 298.2 322.5 261.6 299.1 324.5 nan nan nan 263.7 298.1 318.0 265.6 296.7 315.3 nan nan nan 263.7 298.2 318.0

pr mmday 1 0.0 3.9 25.4 0.0 3.4 15.6 0.0 3.8 19.7 0.0 3.6 18.8 0.0 3.6 16.9 nan nan nan 0.0 3.7 37.5 0.0 3.4 18.9 nan nan nan 0.0 3.6 18.9

ts K 261.4 299.0 319.4 268.6 298.7 322.0 269.1 299.4 315.7 260.9 299.0 324.9 261.3 299.9 326.8 nan nan nan 262.7 299.1 319.3 264.3 297.4 316.1 nan nan nan 262.7 299.0 319.4

evspsbl mmday 1 0.1 3.9 8.2 0.0 3.4 8.9 0.1 3.8 8.2 0.0 3.6 9.8 0.0 3.6 9.6 nan nan nan 0.0 3.7 9.9 0.0 3.4 11.1 nan nan nan 0.0 3.6 9.6

clt % 11.3 58.1 89.7 6.4 55.7 96.2 6.6 57.3 97.8 5.6 50.5 85.9 5.3 50.0 87.6 nan nan nan 8.5 45.7 94.4 26.1 73.9 97.5 nan nan nan 6.6 55.7 94.4

rlds Wm 2 229.5 412.3 507.0 274.1 415.2 541.9 271.5 417.5 499.7 228.4 407.3 547.7 230.3 415.7 561.9 nan nan nan 215.8 404.9 509.2 230.1 397.3 495.4 nan nan nan 230.1 412.3 509.2

rlus Wm 2 271.7 457.4 593.4 296.6 456.9 610.5 304.6 460.4 566.6 271.7 458.3 634.8 274.0 464.3 650.4 nan nan nan 277.5 458.2 590.6 285.2 445.6 565.7 nan nan nan 277.5 458.2 593.4

rsds Wm 2 64.3 185.8 268.2 21.9 174.4 282.8 33.4 182.4 281.2 55.7 186.2 297.0 57.9 186.2 292.9 nan nan nan 46.9 201.1 296.1 47.0 175.4 291.5 nan nan nan 47.0 185.8 291.5

rsus Wm 2 4.9 14.5 62.2 3.2 16.8 47.3 4.5 14.5 55.3 4.7 15.3 58.8 4.5 15.3 58.2 nan nan nan 4.9 19.2 62.1 3.5 14.2 74.3 nan nan nan 4.5 15.3 58.8

rsdt Wm 2 171.4 340.3 416.9 172.7 341.8 417.7 171.9 341.2 416.7 173.4 341.4 416.8 173.4 341.4 416.8 nan nan nan 173.0 341.4 417.0 172.4 341.6 417.3 nan nan nan 172.7 341.4 416.9

rsut Wm 2 45.2 83.5 206.0 52.1 96.5 176.6 42.8 90.1 206.9 44.1 89.0 175.5 45.0 88.0 165.5 nan nan nan 47.2 81.2 155.8 48.7 92.3 164.7 nan nan nan 45.2 89.0 175.5

rlut Wm 2 194.7 257.2 320.4 181.3 243.5 320.7 197.0 251.2 314.0 189.2 252.5 336.6 190.4 253.4 337.6 nan nan nan 195.9 259.5 319.4 191.9 248.3 300.8 nan nan nan 191.9 252.5 320.4

rldscs Wm 2 nan nan nan nan nan nan 221.6 400.1 495.8 196.9 392.6 545.2 199.2 401.7 560.1 nan nan nan 191.1 388.0 508.1 207.6 373.7 493.2 nan nan nan 199.2 392.6 508.1

rsdscs Wm 2 112.3 236.4 304.0 nan nan nan 114.9 241.2 306.6 106.6 239.7 306.9 106.4 238.3 302.7 nan nan nan 118.9 246.5 309.2 116.8 241.4 309.5 nan nan nan 113.6 240.5 306.7

rsuscs Wm 2 10.7 18.2 70.2 nan nan nan 12.6 19.9 57.3 11.7 19.6 59.8 11.6 19.5 59.3 nan nan nan 11.3 23.4 64.9 9.0 20.5 76.7 nan nan nan 11.5 19.7 62.3

rsutcs Wm 2 27.7 39.4 79.8 32.1 49.1 75.7 27.2 37.8 73.1 31.1 42.4 78.9 31.1 42.3 78.1 nan nan nan 26.2 42.2 82.6 29.9 43.4 97.7 nan nan nan 29.9 42.3 78.9

rlutcs Wm 2 204.3 277.1 328.1 214.8 273.1 327.3 216.8 275.7 319.0 207.9 278.2 343.3 208.8 279.9 344.9 nan nan nan 215.0 287.9 334.4 208.1 275.3 313.3 nan nan nan 208.8 277.1 328.1

hfss Wm 2 -10.9 14.4 112.4 -62.9 17.0 154.7 -23.7 13.9 120.8 -11.7 16.7 133.6 -12.1 16.6 136.6 nan nan nan -33.5 20.2 140.7 -31.9 14.5 121.6 nan nan nan -23.7 16.6 133.6

hfls Wm 2 1.8 111.8 236.8 0.0 98.1 257.9 nan nan nan 0.2 103.1 284.3 0.3 105.5 277.2 nan nan nan 0.2 108.0 285.5 1.4 97.7 322.0 nan nan nan 0.2 104.3 280.7

uas ms 1 nan nan nan -8.8 -0.7 9.4 -8.6 -0.8 7.2 -9.7 -0.7 6.8 -9.7 -0.7 6.7 nan nan nan -7.1 -0.6 6.5 -7.8 -0.7 8.1 nan nan nan -8.7 -0.7 7.0

vas ms 1 nan nan nan -7.6 -0.0 8.9 -6.4 -0.1 6.7 -6.7 -0.1 7.9 -6.7 -0.1 8.0 nan nan nan -5.9 -0.0 6.8 -5.6 -0.0 7.9 nan nan nan -6.5 -0.1 7.9

tauu Pa nan nan nan -0.3 0.0 0.5 -0.3 -0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 nan nan nan -0.3 0.0 0.3 -0.5 -0.0 0.3 nan nan nan -0.3 0.0 0.3

tauv Pa nan nan nan -0.2 -0.0 0.2 -0.2 -0.0 0.2 -0.2 -0.0 0.2 -0.2 -0.0 0.2 nan nan nan -0.2 -0.0 0.3 -0.3 -0.0 0.3 nan nan nan -0.2 -0.0 0.2

ps hPa 768.2 987.6 1014.0 794.6 985.5 1040.7 795.1 1005.1 1032.8 752.7 982.0 1007.3 754.0 982.0 1007.5 nan nan nan 760.0 995.0 1020.6 795.6 985.5 1017.1 nan nan nan 768.2 985.5 1017.1

psl hPa 982.0 1002.2 1015.5 975.4 1001.8 1017.7 1001.2 1019.6 1033.8 976.6 995.4 1007.3 975.5 995.3 1007.5 nan nan nan 991.5 1009.6 1020.6 976.8 1000.5 1016.3 nan nan nan 976.8 1001.8 1016.3

snc % nan nan nan nan nan nan nan nan nan 0.0 15.0 76.7 0.0 14.7 74.9 nan nan nan 0.0 7.7 66.5 0.0 3.2 61.9 nan nan nan 0.0 11.2 70.7

ua ms 1 -6.6 5.3 17.5 -7.8 6.9 24.8 -7.1 5.7 19.2 -8.6 7.1 21.1 -9.7 7.2 21.4 nan nan nan -5.4 5.8 21.0 -9.3 6.1 24.0 nan nan nan -7.8 6.1 21.1

va ms 1 -4.9 0.0 4.0 -6.5 0.0 5.6 -5.3 0.0 4.5 -5.6 0.0 4.4 -5.7 0.0 4.8 nan nan nan -6.2 0.0 4.6 -5.4 0.0 4.7 nan nan nan -5.6 0.0 4.6

wap Pas 1 -0.1 0.0 0.1 -0.1 -0.0 0.1 -0.1 -0.0 0.1 -0.1 -0.0 0.1 -0.1 -0.0 0.1 nan nan nan -0.3 0.0 0.3 -0.1 0.0 0.1 nan nan nan -0.1 -0.0 0.1

zg m 5301.1 5795.7 5978.4 5318.0 5849.4 6083.7 5472.3 5951.0 6146.5 5290.1 5765.3 5990.8 5289.8 5792.2 6023.9 nan nan nan nan nan nan 5277.3 5759.7 5971.5 nan nan nan 5295.6 5793.9 6007.3

ta K 250.0 268.7 277.7 250.3 270.6 281.8 247.1 268.9 278.9 250.1 270.5 281.9 252.0 272.1 283.5 nan nan nan nan nan nan 248.7 267.1 276.8 nan nan nan 250.1 269.7 280.3

hus 1 0.9 3.0 7.1 1.0 3.8 10.0 0.7 3.3 7.7 0.7 2.8 8.6 0.8 3.2 9.6 nan nan nan nan nan nan 0.7 2.4 6.8 nan nan nan 0.8 3.1 8.2

cl % 0.2 12.8 33.4 nan nan nan 0.1 10.6 39.9 nan nan nan nan nan nan nan nan nan nan nan nan 0.1 7.4 27.0 nan nan nan 0.1 10.6 33.4

cll % nan nan nan nan nan nan 1.7 36.3 94.3 0.0 18.2 62.0 0.0 18.0 60.5 nan nan nan 0.0 24.3 91.8 nan nan nan nan nan nan 0.0 21.2 76.9

clm % nan nan nan nan nan nan 0.3 18.6 67.6 0.0 12.3 37.6 0.0 12.3 40.4 nan nan nan 0.0 5.7 35.5 nan nan nan nan nan nan 0.0 12.3 39.0

clh % nan nan nan nan nan nan 2.2 33.3 68.6 0.9 16.9 40.1 0.5 16.2 40.2 nan nan nan 8.2 30.0 63.0 nan nan nan nan nan nan 1.5 23.4 51.6

sftlf % 0.0 26.4 100.0 0.0 34.8 100.0 0.0 25.9 100.0 0.0 26.4 100.0 0.0 26.4 100.0 nan nan nan 0.0 27.1 100.0 0.0 26.9 100.0 nan nan nan 0.0 26.4 100.0

orog m 0.0 129.3 2242.2 0.0 144.4 2304.8 0.0 129.0 2146.7 0.0 125.3 2378.7 0.0 125.3 2378.7 nan nan nan 0.0 129.0 2345.2 -88.4 132.9 1969.5 nan nan nan 0.0 129.0 2304.8

CESM COSMOS GFDL HadCM3 HadCM3L INM IPSL MIROC NorESM median

deepmip-eocene-p1-x3 atmos mean validation table
0 3|z-score|

Figure 2. Technical validation of atmospheric global model fields of the ×3 experiment across the ensemble. Variables with
multiple vertical levels are shown for the respective model pressure level closest to 500 hPa. Tables for other experiments and
"time_series" files can be found in the web application at https://data.deepmip.org/Validation_tables. Note that the INM and
NorESM models did not perform the ×3 experiment (Table 1) and are therefore excluded from this analysis.

min mean max min mean max min mean max min mean max min mean max min mean max min mean max min mean max min mean max min mean max

tos degC 5.6 27.6 36.7 0.2 27.4 38.2 1.0 28.2 38.0 2.0 26.9 38.7 2.6 28.0 39.2 nan nan nan 0.9 27.7 39.5 0.4 25.9 37.3 nan nan nan 1.0 27.6 38.2

siconc % 0.0 0.0 23.3 0.0 0.8 58.2 0.0 0.6 42.0 0.0 0.1 30.4 0.0 0.2 34.1 nan nan nan 0.0 0.5 40.7 0.0 0.5 37.2 nan nan nan 0.0 0.5 37.2

uo cms 1 -9.4 -0.1 7.2 -4.5 -0.0 5.5 -5.4 -0.1 5.7 -5.8 -0.1 7.2 -1.3 0.0 2.6 nan nan nan -3.9 -0.0 3.4 -2.5 -0.1 4.7 nan nan nan -4.5 -0.1 5.5

vo cms 1 -9.7 -0.0 10.2 -6.2 -0.0 4.3 -5.7 0.0 7.9 -7.8 -0.0 8.3 -1.9 -0.0 2.2 nan nan nan -4.5 -0.0 6.5 -5.8 -0.0 3.9 nan nan nan -5.8 -0.0 6.5

wo cmday 1 -9.6 0.0 14.5 -12.2 0.0 4.5 -9.2 0.0 3.1 -10.5 -0.0 8.2 -2.0 0.0 2.6 nan nan nan -21.7 0.0 13.8 -7.0 0.0 9.0 nan nan nan -9.6 0.0 8.2

thetao degC 0.5 12.3 17.2 2.2 13.3 17.7 3.8 12.1 16.7 8.5 12.6 16.1 -1.6 13.7 17.2 nan nan nan 3.6 10.4 13.1 1.0 10.8 18.0 nan nan nan 2.2 12.3 17.2

so 0.001 21.6 35.4 36.0 8.6 34.8 36.0 13.5 34.5 35.4 28.4 34.8 35.8 17.0 34.8 36.0 nan nan nan 16.6 34.6 35.4 15.8 34.8 36.4 nan nan nan 16.6 34.8 36.0

mlotst m 8.5 52.0 413.3 6.7 75.2 1968.8 15.0 46.8 1220.7 0.0 34.9 229.4 0.0 28.2 329.6 nan nan nan 10.0 36.3 896.2 3.0 71.8 1881.3 nan nan nan 6.7 46.8 896.2

zos m nan nan nan -1.3 0.0 1.3 nan nan nan nan nan nan nan nan nan nan nan nan -1.2 0.2 1.0 -1.2 -0.1 1.0 nan nan nan -1.2 0.0 1.0

tauuo Nm 2 -0.2 -0.0 0.1 nan nan nan -0.1 -0.0 0.2 -0.1 -0.0 0.1 -0.1 -0.0 0.1 nan nan nan -0.1 -0.0 0.1 -0.1 0.0 0.2 nan nan nan -0.1 -0.0 0.1

tauvo Nm 2 -0.1 -0.0 0.1 nan nan nan -0.1 -0.0 0.1 -0.1 -0.0 0.1 -0.1 -0.0 0.1 nan nan nan -0.1 -0.0 0.1 -0.1 -0.0 0.1 nan nan nan -0.1 -0.0 0.1

hfds Wm 2 -188.4 -0.3 126.8 -252.8 -0.6 144.3 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan -309.2 0.3 133.2 nan nan nan -252.8 -0.3 133.2

wfo mmday 1 -8.6 -0.1 45.4 -0.0 -0.0 0.1 -8.6 -0.2 98.2 -8.8 -0.1 121.7 -7.8 -0.3 56.0 nan nan nan -139.1 0.3 8.6 -6.6 -0.1 55.7 nan nan nan -8.6 -0.1 55.7

difvtrbo cm 2s 1 nan nan nan 0.1 5.9 632.6 0.0 270.1 142306.1 0.4 0.5 19.5 0.4 0.4 0.4 nan nan nan nan nan nan 0.4 0.4 0.4 nan nan nan 0.4 0.5 19.5

difvmo cm 2s 1 nan nan nan 0.5 0.6 13.2 0.0 189.9 56440.8 0.1 0.1 2.5 0.0 0.1 8.8 nan nan nan nan nan nan 20.0 20.0 20.0 nan nan nan 0.1 0.6 13.2

deptho m 0.0 2810.3 5500.0 1.0 4236.2 5264.2 40.0 3928.5 5288.3 47.8 3927.0 5192.5 47.8 4043.0 5192.6 nan nan nan 0.0 2816.9 5288.9 45.0 3845.9 5150.0 nan nan nan 40.0 3927.0 5264.2

CESM COSMOS GFDL HadCM3 HadCM3L INM IPSL MIROC NorESM median

deepmip-eocene-p1-x3 ocean mean validation table0 3|z-score|

Figure 3. Technical validation of ocean global model fields of the ×3 experiment across the ensemble. Variables with
multiple vertical levels are shown for the respective model depth closest to 1000 m. Tables for other experiments and
"time_series" files can be found in the web application at https://data.deepmip.org/Validation_tables. Note that the INM and
NorESM models did not perform the ×3 experiment (Table 1) and are therefore excluded from this analysis.
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Figure 4. Example user input and extracted model data for a single site in the web application.
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Figure 5. Example graphical output of the web application for the model-data comparison of the Store Bælt (Denmark) site
defined in Fig. 4. (a) Simulated annual cycle of sea surface temperatures at the respective grid point closest to the reconstructed
paleoposition of the site. Solid lines show the ensemble mean for each CO2 concentration with individual models represented
by the dashed lines. (b) Scatter plot of the simulated annual mean sea surface temperature at the proxy site compared to the
global mean surface temperature of the respective simulation. Lines connect results of the same model. Reconstructed proxy
temperature is based on the TEX86 paleothermometer2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Maps of local boundary condition differences between some of the models around the the Store Bælt (Denmark) site
defined in Fig. 4 produced by the web application. The reconstructed paleoposition of the site (red dot) represents a land point
in COSMOS (panel d-f) and ocean points in the other models. Note the different paleogeographic reconstruction used in
NorESM (panel j-l).
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