
Abstract Earth's hydrological cycle is expected to intensify in response to global warming, with a 
“wet-gets-wetter, dry-gets-drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) 
are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be 
characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global 
and zonal-mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep-Time Model 
Intercomparison Project (DeepMIP) model ensemble indicates that the mid- (30°–60°N/S) and high-latitudes 
(>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and 
overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with 
several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter 
is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation 
anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability 
in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature 
gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading 
to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation 
reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced 
subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by 
those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading 
to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients 
when reconstructing past rainfall patterns.

Plain Language Summary As the world warms, the atmosphere is able to hold more moisture—
however, this moisture will not fall evenly across the globe. Some regions are expected to become wetter, 
whereas other regions will become drier. This is the basis of the familiar paradigm “wet-gets-wetter, 
dry-gets-drier” and is largely supported by future model projections. However, evidence from the geological 
record contradicts this hypothesis and suggests that a warmer world could be characterized by wetter (rather 
than drier) subtropics. Here, we use an integrated data-modeling approach to investigate the hydrological 
response to warming during an ancient warm interval (the early Eocene, 56–48 million years ago). We show 
that models with weaker latitudinal temperature gradients are characterized by a reduction in subtropical 
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Key Points:
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cycle in the DeepMIP models is 
characterized by a “wet-gets-wetter, 
dry-gets-drier” response

•  The early Eocene exhibits weaker 
subtropical moisture divergence in 
simulations with reduced meridional 
temperature gradients

•  This highlights the important role of 
the meridional temperature gradient 
when predicting past (and future) 
rainfall patterns
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1. Introduction
Future global warming is projected to be associated with a global-mean increase in mean annual precipitation 
(MAP) and a shift in regional and seasonal rainfall patterns (Chapter 8 of Masson-Delmotte et al., 2022), with 
important consequences for societies and ecosystems. Under higher global temperatures, Earth's atmosphere 
will contain more water vapor following the Clausius–Clapeyron relation (Held & Soden, 2006). This “thermo-
dynamic effect” forms the basis for the predicted zonal-mean “wet-gets-wetter, dry-gets-drier” response under 
enhanced radiative forcing, whereby the existing spatial patterns in precipitation-evaporation (P–E) are exacer-
bated over the ocean (Held & Soden, 2006; Seager et al., 2010). However, this simple thermodynamic scaling 
does not hold true over land (Byrne & O’Gorman, 2015) and dynamical processes likely play an additional role 
(Byrne & O’Gorman,  2015). Overall, general circulation models (GCMs) used in Coupled Model Intercom-
parison Project Phase 6 (CMIP6) suggest that higher global mean surface temperatures (GMST) will lead to 
wetter high latitudes (>60°N/S) (i.e., positive P–E change), and drier subtropics (15°–30°N/S) (i.e., negative 
P–E change) (Hoegh-Guldberg et  al., 2018; Masson-Delmotte et  al., 2022). However, the same models disa-
gree on the nature of change in much of the remainder of the low to middle latitudes, both over land and ocean 
(Masson-Delmotte et al., 2022; Slingo et al., 2022), which is a key uncertainty for appropriate climate mitigation 
and adaptation.

Moreover, evidence from warm intervals in the geological past suggests that the subtropics may ultimately get 
wetter (rather than drier) under quasi-equilibrated warmer conditions, that is, “dry-gets-wetter.” For example, 
both the Miocene (23.0–5.3 million years ago; Ma) and Pliocene (5.3–2.6 Ma) yield multi-proxy evidence for 
wetter subtropics in southern Australia (Sniderman et al., 2016), North Africa (Feng et al., 2022; Hailemichael 
et al., 2002; Schuster et al., 2009), South America (Carrapa et al., 2019), South-East Asia (Feng et al., 2022; 
Wang et al., 2019), and western North American (Bhattacharya et al., 2022). Burls and Fedorov (2017) suggest 
these wetter subtropical conditions were due to weaker large-scale surface temperature gradients supporting 
weaker large-scale atmospheric circulation and hence subtropical moisture divergence. Although the impact 
of zonal-mean changes in circulation (dynamic effect) is often considered secondary to changes in atmos-
pheric humidity (thermodynamic effect), the former may be important under certain climate scenarios (e.g., 
weak latitudinal temperature gradients; LTGs; see also Byrne & O’Gorman, 2015) and may even compensate 
for an increase in atmospheric humidity (Burls & Fedorov, 2017). At a regional scale, enhanced monsoonal 
circulation in the north Africa–east Asia region (Feng et al., 2022; Zhang et al., 2013) and western North 
America (Bhattacharya et al., 2022) further account for the wetter climate across those subtropical monsoon 
regions.

Here we focus on the early Eocene (56.0–47.8 million years ago; Ma) (Hollis et al., 2019), an interval charac-
terized by higher CO2 values (>1,000 parts per million) (Anagnostou et al., 2020), higher global mean surface 
temperature (10–16°C warmer than pre-industrial) (Inglis et al., 2020) and reduced pole-to-equator LTGs (of 
∼17°–22°C) (Cramwinckel et  al.,  2018; Evans et  al.,  2018; Gaskell et  al.,  2022). This is an ideal interval to 
study how changes in GMST and the LTG impact tropical, subtropical, mid- and high-latitude rainfall patterns. 
However, there are very few quantitative early Eocene-aged MAP estimates, particularly from the subtropics 
(15°–30°N/S), and the hydrological response to warming remains largely unknown. To resolve this, we utilize the 
recently published state-of-the-art Deep-Time Model Intercomparison Project (DeepMIP) suite of Eocene model 
simulations (Lunt et al., 2021) to explore the simulated global- and regional-scale hydrological response to warm-
ing. This is combined with a new (terrestrial) proxy compilation to answer the following questions: (a) How does 
simulated tropical, subtropical, mid- and high-latitude MAP and P-E respond to Eocene boundary conditions and 
increasing GMST, and what is the level of agreement across the DeepMIP models? (b) What is the relative role 
of changes in local evaporation versus moisture divergence (time-mean and eddy) in driving the MAP changes? 
(c) Are early Eocene simulations characterized by a “wet-gets-wetter, dry-gets-drier” response? (d) How do the 
simulated thermodynamic (i.e., humidity) and dynamic (i.e., circulation) effects contribute to changes in moisture 
transport in the subtropics? (e) How well do the DeepMIP models replicate proxy-derived MAP estimates?

moisture divergence. However, this was not sufficient to induce subtropical wetting. If the meridional 
temperature gradient was weaker than suggested by the models, circulation-induced changes may have lead 
to wetter subtropics. This work shows that the latitudinal temperature gradient is a key factor that influences 
hydroclimate in the subtropics, especially in past warm climates.
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2. Methods
2.1. Modeling Simulations

2.1.1. DeepMIP-Eocene Simulations

We make use of the DeepMIP suite of model simulations, embedded in the fourth phase of the Paleoclimate 
Modeling Intercomparison Project (Kageyama et al., 2018), itself a part of the sixth phase of the Coupled Model 
Intercomparison Project (CMIP6; Eyring et al., 2016). An extensive description of the standard design of these 
model experiments is provided in Lunt et al. (2017), and an overview of the large-scale climate features has been 
presented in Lunt et al. (2021). The main advantage of these simulations over the EoMIP (Eocene Modeling Inter-
comparison Project) “ensemble of opportunity” employed in earlier work (Carmichael et al., 2016) is that the new 
DeepMIP simulations have been designed and carried out using internally consistent Eocene boundary conditions 
(Herold et al., 2014; Lunt et al., 2017). Simulations have been run at different atmospheric CO2 levels—typically 
×1, ×3, ×6, and ×9 preindustrial (PI) CO2, but with a subset of these, or additional atmospheric CO2 concen-
trations, chosen by some model groups (see Lunt et al., 2017; Lunt et al., 2021). Different CO2 experiments are 
expected to provide comparison targets to climate reconstructions for different key time slices, including the 
early Eocene Climatic Optimum (EECO; ∼53.3–49.1 Ma), the Paleocene–Eocene Thermal Maximum (PETM; 
∼56 Ma), and the latest Paleocene (i.e., pre-PETM). Pre-industrial simulations (×1 CO2) with modern continental 
configurations have also been performed to assess the influence of non-CO2 Eocene boundary conditions. Simu-
lations have been performed with eight different models (Table S1 in Supporting Information S1) and detailed 
descriptions of the models and simulations are provided in Lunt et al. (2021). To explore regional variations in 
hydroclimate, we subdivide our data into four latitudinal bands: (a) the tropics (0°–15°N/S), (b) the subtropics 
(15°–30°N/S), (c) the mid-latitudes (30°–60°N/S), and (d) the high-latitudes (>60°N/S). To further deconvolve 
the cause of global and regional variations, we perform a moisture budget analysis. The analyzed climatologies 
are based on the last 100 years of each simulation. As different models provided slightly different variables, 
for some models we were not able to provide analysis of P–E (NorESM), or moisture budget analysis (IPSL, 
INMCM, and NorESM). We compare observed changes in subtropical hydrology to changes in the modeled lati-
tudinal temperature gradient (LTG), here taken as the difference in surface temperature between the mid-latitudes 
(30°–60°N/S) and the tropics (15°N–15°S).

2.1.2. Moisture Budget Analysis

To diagnose the cause of P–E changes within the DeepMIP ensemble, we conduct a moisture budget analysis 
(Seager & Henderson, 2013; Trenberth & Guillemot, 1995). This approach relies on the fact that climatologi-
cal changes in P–E—calculated over a long enough timescale that fluctuations in the column integrated mois-
ture content are negligible (in our case the last 100 years of each DeepMIP simulation)—are balanced by the 
column-integrated convergence of moisture in the overlying atmosphere, as follows:

𝑃𝑃 − 𝐸𝐸 = −∇ ⋅

1

𝑔𝑔 ∫
𝑝𝑝𝑠𝑠

𝑝𝑝𝑡𝑡

⃖⃗𝑣𝑣𝑣𝑣 𝑣𝑣𝑝𝑝 

where g is the acceleration due to gravity (ms −2), q the atmospheric specific humidity (kg/kg), and v the hori-
zontal wind vector (ms −1) integrated across pressure (p, Pa) levels from the surface (ps) to the top of the tropo-
sphere (tropopause; pt). This climatological moisture convergence can be further decomposed into its time-mean 
(𝐴𝐴 𝑣𝑣 𝑞𝑞 ) and eddy (𝐴𝐴 𝑣𝑣′ 𝑞𝑞′ ) components. The time-mean component is calculated using the climatological mean data 
provided in the DeepMIP data set while the eddy component is calculated as the residual between P–E and the 
time-mean component given that the high temporal resolution data required to calculate this term explicitly is not 
available as part of the DeepMIP data set.

2.2. Proxy Synthesis

2.2.1. Approach

Fossil leaves and palynomorphs (spores and pollen) can provide quantitative estimates of MAP in the past. Using 
these, the primary approaches are: (a) leaf physiognomy (i.e., leaf shape) (Givnish, 1984; Greenwood, 2007; 
Wing & Greenwood, 1993; Wolfe, 1993) and (b) nearest living relative (NLR)-based approaches (Greenwood 
et al., 2003; Pancost et al., 2013; Pross et al., 2000; Suan et al., 2017; West et al., 2020). A multi-proxy approach 
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combining leaf physiognomy and NLR data is generally recommended and mitigates the different uncertainties 
incorporated by individual approaches (e.g., West et al., 2020).

Methods based on leaf physiognomy utilize the correlation between the architecture of leaves and climatic vari-
ables. As leaf size and shape are highly sensitive to moisture availability (Givnish, 1984; Peppe et al., 2011; 
Spicer et  al.,  2021), fossil leaf architecture can be related to precipitation using univariate methods such as 
Leaf Area Analysis (LAA) (Wilf et  al.,  1998). The Climate Leaf Analysis Multivariate Program (CLAMP) 
(Wolfe, 1993, 1995) combines multiple leaf traits, including leaf area, leaf shape, and margin state (i.e., toothed or 
untoothed), to provide estimates of annual and seasonal precipitation (Spicer et al., 2021). Anatomical character-
istics of fossil wood can likewise reflect climate variables (Poole and van Bergen, 2006; Wiemann et al., 1998). 
Although wood anatomy as a climate proxy has not had widespread application in deep time climate compila-
tions, multivariate models of various wood anatomical characters are typically used (e.g., Poole et al., 2005).

NLR approaches are based on the premise that the climatic tolerance of a paleo-vegetation assemblage can be 
inferred from their presumed extant relatives (e.g., Fauquette et al., 1998; Greenwood et al., 2003; Mosbrugger & 
Utescher, 1997; West et al., 2020; Willard et al., 2019). These methods can be based on macrofossil (most often 
leaf fossils but also seeds, fruits, or wood) or microfossil (i.e., sporomorphs) paleobotanical assemblages, as long 
as the taxa can be correlated to a living relative with a known climatic tolerance. The coexistence approach (CA; 
Mosbrugger & Utescher, 1997) is a specific instance of this, in which the single climatic interval in which all 
NLRs can coexist is reconstructed. More recent studies employing Bioclimatic Analysis (BA) typically calcu-
late probability density functions of climatic variables instead of minimum-to-maximum intervals (e.g., West 
et al., 2020; Willard et al., 2019). The Climatic Amplitude Method (CAM) is an alternative NLR approach that 
incorporates relative abundances of different taxa (Fauquette et al., 1998).

2.2.2. Proxy Compilation

Here we compile paleobotanical MAP estimates for the late Paleocene (59.2–56 Ma; Thanetian) to early Eocene 
(56.0–47.8 Ma; Ypresian). Our compilation builds upon previous EECO- (Carmichael et al., 2016) and PETM–
aged (Carmichael et al., 2017) compilations. We supplement this with (a) published MAP estimates generated 
since, and (b) newly generated MAP estimates using CLAMP and NLR on published palynological and macroflo-
ral (predominantly leaf-based) datasets. Our new proxy synthesis (n = 322) contains 133 MAP estimates (41%) 
from Carmichael et al. (2016), 106 data points (33%) from other published sources, and 83 new data points (26%) 
(Figure 1; Tables S1 and S2 in Supporting Information S1). The new data in the compilation helps to improve 
geographical coverage in previously data-poor regions, including central west coast and eastern Africa (e.g., 
Adeonipekun et al., 2012; Cantrill et al., 2013; Eisawi & Schrank, 2008) (also recently presented in Williams 
et al. (2022)); the coal and lignite bearing deposits of northeastern India and southern Pakistan (Frederiksen, 1994; 
Tripathi et al., 2000; Verma et al., 2019); the Tibetan plateau and sedimentary basins of southern China (e.g., 
Aleksandrova et al., 2015; Su et al., 2020; Xie et al., 2020); and the South American (e.g., Jaramillo et al., 2007; 

Figure 1. Overview of early Eocene precipitation proxy compilation. Previously published estimates compiled by 
Carmichael et al. (2016) shown as purple squares; additional published estimates plotted as dark green circles; new estimates 
(this study) plotted as light green circles. Sample locations plotted with their modern positions on a present-day world map.
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Pardo-Trujillo et  al., 2003; Quattrocchio & Volkheimer, 2000) and North American continent and Caribbean 
islands (e.g., Graham et  al.,  2000; Jarzen & Klug,  2010; Smith et  al.,  2020) (Figure 1; Supporting Informa-
tion S1). Most of these use the NLR approach based on palynological datasets, as plant macrofossils from the late 
Paleocene—early Eocene low latitudes are more rarely preserved, although some exceptions are known (Herman 
et al., 2017; Shukla et al., 2014; Wing et al., 2009). We also incorporate data from the mid and high latitudes, 
for example, southern South America, North America, Australia and New Zealand, and high Siberia (Support-
ing Information S1). For regions with exceptionally poor data coverage (e.g., tropical and subtropical latitudes, 
Antarctica), we also compile and generate MAP estimates from the early middle Eocene (47.8–∼45 Ma; first 
half of the Lutetian). Published CLAMP and NLR data were re-analyzed following recent recommendations, so 
that there is no bias as a result of discrepant methodology. Specifically, (a) CLAMP-scored fossil leaf assem-
blages were re-analyzed using up-to-date geographically appropriate calibration datasets (Kennedy et al., 2014; 
Reichgelt et al., 2019; Yang et al., 2015), (b) for both CLAMP and NLR reconstructions, gridded climate datasets 
from the R package dismo were employed (Hijmans et al., 2020), and (c) NLR analysis was performed using 
consistently filtered modern distribution datasets to avoid regional overrepresentation (e.g., West et al., 2020). 
Modern site coordinates and age constraints were extracted from the original publications.

2.2.3. Data-Model Comparison Framework

To compare proxy and model data, we employ a data comparison similar to that used for the Miocene MioMIP 
ensemble (Burls et  al.,  2021). This approach requires inclusion of uncertainty for both the proxy and model 
MAP estimates. To account for site location uncertainty, we determine site co-ordinates for the age range of 
our proxy data compilation above, that is, from 59 Ma (late Paleocene) to 45 Ma (early middle Eocene) using 
the Müller et al. (2016) Gplates continental polygons in combination with the hotspot-based rotation frame of 
Matthews et al. (2016) (i.e., analogous to all DeepMIP simulations apart from NorESM; Lunt et al., 2020). For 
the model simulations, MAP values are taken from the grid cells that fall within the proxy location uncertainty. 
The model MAP uncertainty is subsequently defined as the range between minimum and maximum MAP within 
these model grid cells. For proxy estimates, we use the proxy error and error type as reported in the original 
study. Typically, this is a minimum–maximum range or confidence interval (e.g., 95%) for NLR approaches (e.g., 
West et al., 2020; Willard et al., 2019), and standard error (SE) or standard deviation (SD) derived from cali-
bration data set residuals for leaf physiognomy methods (e.g., Teodoridis et al., 2011). For our newly generated 
values, uncertainties are reported as 95% confidence interval for NLR and ±1 SD for CLAMP. The subsequent 
overlap between the model and proxy uncertainty range is assessed following the MioMIP methodology (Burls 
et al., 2021). Any overlap between the proxy and model uncertainty ranges is defined as “no bias” (Figure S1 in 
Burls et al., 2021).

3. Results and Discussion
3.1. DeepMIP Models Reproduce Pre-Industrial Global Precipitation Patterns

Each model included in the DeepMIP suite is able to reproduce the main features of pre-industrial precipita-
tion patterns (Figure 2, Figure S1 in Supporting Information S1). However, some common model precipitation 
biases are apparent. For example, all simulations exhibit a double Inter-Tropical Convergence Zone (ITCZ) in 
MAP, simulating excess precipitation south of the equator. This bias is common and the double ITCZ remains 
a consistent error in both the previous (e.g., CMIP3, CMIP5) and latest (CMIP6) generation of climate models 
(Tian & Dong, 2020). There is also a lack of simulated precipitation in the western equatorial Pacific (Figure 2c). 
Never-the-less, the shape of the South Pacific convergence zone (SPCZ) is improved in the multi-model mean 
(MMM) compared to the previous EoMIP generation model simulations (Carmichael et al., 2016).

3.2. Influence of Non-CO2 Boundary Conditions on the Early Eocene Hydrological Cycle

Non-CO2 boundary conditions (i.e., paleogeography, vegetation, aerosols) can exert an influence on global and 
regional MAP and P–E values. The previous EoMIP ensemble found a minor role for non-CO2 boundary condi-
tions on global MAP (+0.1 mm/day; Carmichael et al., 2016). However, this analysis was only performed for 
a single model simulation (HadCM3L). To better isolate the influence of non-CO2 boundary conditions on the 
early Eocene hydrological cycle, we compared early Eocene 1x CO2 simulations and pre-industrial 1× CO2 simu-
lations from multiple (n = 6) DeepMIP models.

 25724525, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004542 by U
niversity O

f B
ristol L

ibrary, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Paleoceanography and Paleoclimatology

CRAMWINCKEL ET AL.

10.1029/2022PA004542

6 of 21

At a global scale, the early Eocene 1× CO2 simulations are characterized by higher MAP values relative to 
pre-industrial (0.1–0.4 mm/day; 1× CO2 symbols in Figure 3). This is because the early Eocene 1× CO2 simula-
tions have higher global mean surface temperatures (∼3–5°C) relative to the preindustrial 1× CO2 control simu-

lations (see also Lunt et al., 2021) (Figure S2 in Supporting Information S1). 
This leads to enhanced surface evaporation which is balanced by precipita-
tion globally (Held & Soden, 2006; Siler et al., 2019).

At a regional scale, the early Eocene 1× CO2 simulations are character-
ized by higher MAP estimates in the tropics (0°–15°N/S), mid-latitudes 
(30°–60°N/S), and high-latitudes (>60°N/S) (typically +0.1 to +0.4  mm/
day, but up to +0.6 mm/day in the high-latitudes, Figures 4 and 5; Figure 
S3 in Supporting Information  S1) relative to pre-industrial. The tropics, 
mid-latitudes, and high-latitudes are also characterized by positive P–E values 
(typically +0.1–0.2 mm/day, but up to +0.4 mm/day in the high-latitudes; 
Figures 4 and 6 and Figures S4 and S5 in Supporting Information S1) relative 
to pre-industrial. Furthermore, the tropics are characterized by an eastward 
shift and expansion in deep tropical convection, and hence the Walker Circu-
lation, over the Pacific Ocean (Figure 4). Focusing on the ITCZ, non-CO2 
Eocene boundary conditions only affect the width of the ITCZ (defined as 
in Byrne and Schneider (2016)) in CESM and MIROC, where it increases 
slightly (Figure 7a). Additionally, the ITCZ latitude of maximum precipita-
tion shifts northwards relative to the preindustrial control in three (CESM, 
HadCM3B, and MIROC) of the five models that performed the 1× CO2 
experiment (Figure 7b). The subtropical (15°–30°N/S) early Eocene 1× CO2 
MMM difference from the pre-industrial is characterized by negative P–E 
values (−0.2 to −0.8 mm/day; Figure 6 and Figures S4 and S5 in Supporting 
Information S1), but the associated MAP estimates span a wide range and 
can be higher (i.e., CESM, GFDL, MIROC; 0.1–0.6 mm/day) or lower (i.e., 

Figure 3. Global hydrological response to warming in the Deep-Time Model 
Intercomparison Project (DeepMIP) experiments. Global mean change in 
precipitation relative to pre-industrial (in % change) on the vertical axis plotted 
against global mean surface air temperature (GMST) relative to pre-industrial 
(in °C) on the horizontal axis. Simulations with the same model at three or 
more different CO2 levels have been connected by colored lines. Correlation 
coefficient of a linear fit through the combined values (black line) is 0.96, 
slope is 2.4% increase in precipitation per °C of warming.

Figure 2. Rainfall patterns in Deep-Time Model Intercomparison Project (DeepMIP) pre-industrial simulations. (a) Climate Prediction Center (CPC) Merged Analysis 
of Precipitation (CMAP) Observations (Xie & Arkin, 1997), (b) multi-model mean (MMM) of precipitation estimates (mm/day) for the pre-industrial control runs for 
the 99 model simulations in the DeepMIP ensemble (middle), (c) MMM anomalies in precipitation (mm/day) for DeepMIP pre-industrial control runs minus modern 
observations. (d) Zonal-mean precipitation of DeepMIP model control runs and modern observations. Note that the MMM contains a different model ensemble for 
different CO2 concentrations (see Figure 4 and Table S1 in Supporting Information S1).
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COSMOS, HadCM3L, HadCM3LB; −0.1 to −0.2 mm/day) relative to pre-industrial (Figure 5 and Figure S3 in 
Supporting Information S1). When assessing the relative roles of local evaporation, time-mean moisture trans-
port divergence, and eddy moisture transport divergence changes, generally the models with increased 1× CO2 
subtropical MAP (i.e., CESM, GFDL, MIROC) experience increased local subtropical evaporation that is not 
completely counteracted by the enhanced time-mean moisture divergence (Figure 8c and Figure S6b in Support-
ing Information S1).

3.3. Global and Zonal-Mean Variability in the Early Eocene Hydrological Cycle

The DeepMIP simulations span a wide range of CO2 concentrations (x1 to x9 PI CO2) and GMST (∼17–35°C) 
and can thus provide insights into the global- and regional-scale hydrological response to CO2-induced warming. 
Across the DeepMIP ensemble, higher GMST estimates are associated with higher global-mean MAP estimates 
as warming leads to enhanced surface evaporation, both between different models and within the same model at 
different CO2 levels (Figure 3). Similar to previous studies (e.g., Held & Soden, 2006; Siler et al., 2019) and the 
latest CMIP models (MMM = 2.51%/K with a range of 2.1%–3.1%/K per Pendergrass, 2020) the best linear fit 
across the entire DeepMIP ensemble is a 2.4% increase in global MAP per degree of warming.

Next to this global perspective, there are also zonal-mean variations in MAP that differ in their relationship with 
GMST (Figure 5). In the tropics (0°–15°N/S), the mid-latitudes (30°–60°N/S) and the high-latitudes (>60°N/S), 
higher GMST estimates are associated with higher MAP estimates, with the greatest sensitivity to GMST in the 
high latitudes (9.1% increase in precipitation per °C warming; Figure 5d). As CO2, and hence GMST increases, 
both enhanced local evaporation and time-mean moisture convergence are responsible for the rise in tropical 

Figure 4. Multi-model mean temperature and precipitation anomalies relative to the pre-industrial control in the Deep-Time Model Intercomparison Project (DeepMIP) 
simulations. (a) surface air temperature, (b) precipitation and (c) precipitation—evaporation (P–E). “n” values above each plot represent the number of models available 
for calculating the multi-model mean. See Figure S7 in Supporting Information S1 for the standard deviation in each variable across the ensemble members contributing 
to the ensemble mean.
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precipitation across the DeepMIP multi-model ensemble (Figure S6a in Supporting Information S1). The width 
of the ITCZ decreases with increased CO2 in five (CESM, COSMOS, HadCM3B, HadCM3BL and MIROC) 
of the six models that provided the meridional wind field variable required to perform ITCZ width calcula-
tions (Figure 7a). This is consistent with recent data-assimilation based work focusing on the PETM (Tierney 
et al., 2022). To varying degrees, the ITCZ latitude of maximum precipitation shifts southwards with increasing 
CO2 in most of the models (Figure 7b). In the high-latitudes, increased local evaporation and time-mean plus 
eddy moisture convergence work together to maintain the greatest sensitivity of MAP to GMST in the high lati-
tudes (Figure S6d in Supporting Information S1). Similar to the tropics and high-latitudes, increased local evapo-
ration with elevated CO2 concentrations plays a key role in increasing mid-latitude MAP values. However, much 
like the subtropics discussed next, there are significant model differences in the (relatively minor) contribution of 
the time-mean and eddy moisture flux divergence terms (Figure S6c in Supporting Information S1).

In the subtropics (15°–30°N/S), the relationship between GMST and MAP differs greatly between the DeepMIP 
model simulations. For this latitudinal band there is a wide range in MAP estimates: HadCM3, MIROC and 
COSMOS simulate lower MAP values relative to pre-industrial, whereas CESM and GFDL simulate higher 

Figure 5. Mean annual precipitation (MAP) values in the Deep-Time Model Intercomparison Project (DeepMIP) Eocene simulations for the (a) tropics (15°–15°N/S), 
(b) subtropics (15°–30°N/S), (c) mid latitudes (30°–60°N/S), and (d) high latitudes (60°–90°N/S). Panels (a–d) show the % change in MAP relative to pre-industrial 
versus the change in global mean surface air temperature change (GMST; °C) relative to pre-industrial. Simulations with the same model at three or more different CO2 
levels have been connected by colored lines. Dashed black line represents a linear fit through the combined values and the slope and correlation coefficient are shown in 
bottom right hand corner. Note that y-axis scaling differs between plots.
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MAP values relative to pre-industrial (Figure 5b). Moisture budget diagnostics (see below) suggest that a weaker 
latitudinal temperature gradient is the cause of higher subtropical MAP values in both CESM and GFDL.

For a given global mean temperature change, the DeepMIP models also exhibit different zonal-mean P–E responses. 
In the tropics and the high-latitudes, higher GMST estimates are associated with more positive P–E values and over-
all wetter conditions (Figure 6). In the subtropics, higher GMST estimates are associated with more negative P–E 
values and overall drier conditions (Figure 6b). This indicates that from a zonal-mean perspective the early Eocene 
largely conforms to the “wet-gets-wetter, dry-gets-drier” hypothesis within the DeepMIP simulations. Lastly, there 
is a weak relationship between GMST and P–E values in the mid-latitudes (Figure 6c). As the mid-latitude band 
encompasses both positive and negative P–E values compared to pre-industrial (ca. −2 to +2 mm/day; Figure 4), 
the lack of relationship between CO2 and temperature in this zonally averaged view is perhaps unsurprising.

Our moisture budget analysis (Figure 8 and Figure S8 in Supporting Information S1) lends further insight into 
the mechanisms driving the simulated subtropical P–E changes. Generally speaking, the time-mean component 
is the dominant component in the tropics, where the time-mean moisture transport typically dominates over the 
eddy component (Figures 8c and 8d). Changes in net P–E values (δ(P–E)) due to the time mean component 
can be further decomposed into: (a) changes in humidity assuming constant preindustrial circulation (𝐴𝐴 𝑣𝑣cnt𝛿𝛿𝑞𝑞 , 

Figure 6. Precipitation-evaporation (P–E) values in the Deep-Time Model Intercomparison Project (DeepMIP) model simulations for the (a) tropics (15°–15°N/S), (b) 
subtropics (15°–30°N/S), (c) mid latitudes (30°–60°N/S), and (d) high latitudes (60°–90°N/S). Panels (a–d) show the change in P–E relative to pre-industrial (mm/day) 
versus the change in global mean surface air temperature change (GMST; °C) relative to pre-industrial. Simulations with the sam9e model at three or more different 
CO2 levels have been connected by colored lines. Note that y-axis scaling differs between plots.
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Figure 7. Zonal-mean mean annual precipitation (MAP) and Inter-Tropical Convergence Zone (ITCZ) characteristics in the 
Deep-Time Model Intercomparison Project (DeepMIP)-Eocene simulations. (a) The width of the ITCZ (defined as in Byrne 
and Schneider (2016)), (b) the ITCZ latitude of maximum precipitation and (c) the zonal-mean MAP profiles for each model.
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the thermodynamic component of changes in the time mean moisture divergence), (b) changes in circulation 
assuming constant preindustrial humidity (𝐴𝐴 𝐴𝐴𝑣𝑣𝑞𝑞

cnt
 , the dynamic component of changes in the time mean moisture 

divergence), and (c) a perturbation term representing the coupling of changes in humidity and changes in circu-
lation (𝐴𝐴 𝐴𝐴𝑣𝑣𝐴𝐴𝑞𝑞 ) (Figures 8e and 8f and Figure S9 in Supporting Information S1):

�(� − �)tm = −∇ ⋅
1
� ∫

��

��

�cnt�� �� − ∇ ⋅
1
� ∫

��

��

���cnt �� − ∇ ⋅
1
� ∫

��

��

���� �� + RES 

Figure 8. Zonal-mean components of the hydrological cycle as functions of latitude in the Deep-Time Model Intercomparison Project (DeepMIP) simulations. (a) 
surface precipitation minus evaporation (P–E), (b) implied moisture transport (𝐴𝐴 𝑣𝑣𝑣𝑣 implied in g/kg m/s), (c) moisture transport by time-mean flow (𝐴𝐴 𝑣𝑣 𝑞𝑞 in g/kg m/s), (d) 
moisture transport by eddy transport (𝐴𝐴 𝑣𝑣′ 𝑞𝑞′ in g/kg m/s), (e) the contribution of changes in the time-mean humidity to changes in the time-mean moisture transport (i.e., 
thermodynamic effects) (𝐴𝐴 𝑣𝑣cnt𝛿𝛿𝑞𝑞 in g/kg m/s), (f) the contribution of changes in the circulation to changes in time-mean moisture transport (i.e., dynamic effects) (𝐴𝐴 𝐴𝐴vq

cnt
 

in g/kg m/s). Full set of simulations is plotted as thin transparent colored lines, and the multi model mean as thick colored lines. Note that the MMM contains a different 
model ensemble for different CO2 concentrations (see Figure 4 and Table S1 in Supporting Information S1). Note also that IPSL, INMCM, and NorESM are missing 
from the moisture budget analysis in this and subsequent plots because the atmospheric variables required were missing from the DeepMIP database.
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where “tm” indicates time mean, δ represents the change in each variable between the study interval (i.e., the early 
Eocene) and the pre-industrial climate, and the residual term (RES) accounts for changes in the surface pressure bound 
of the integrals, which is dominated by topographic changes between the Eocene and pre-industrial experiments. 
With increasing temperatures, atmospheric humidity (q) is predicted to increase following the Clausius-Clapeyron 
relation. Assuming that the zonal-mean circulation (v) remains identical to pre-industrial (δv = 0), the dynamic term 
will be zero and the thermodynamic term will result in the tropics and high-latitudes becoming wetter (i.e., the mois-
ture convergence into these regions in the control climate is enhanced) and the subtropics becoming drier (i.e., the 
moisture divergence from this region in the control climate is enhanced). Zonal-mean circulation changes are often 
considered secondary to changes in atmospheric humidity. However, it has been demonstrated that zonal-mean 
circulation changes may be important under certain climate scenarios (e.g., weak latitudinal temperature gradients) 
and may even compensate for changes in atmospheric humidity in regions such as the subtropics on zonal average 
(Burls & Fedorov, 2017). In a scenario where zonal-mean circulation (v)—specifically a decrease in Hadley cell 
strength—dominates over an increase in humidity (q), the subtropics on average will be characterized by reduced 
(rather than enhanced) moisture divergence and wetter (rather than drier) conditions (Burls & Fedorov, 2017).

Focusing on the subtropics in the DeepMIP simulations (Figure  9), higher GMST values indeed result in an 
increase in atmospheric humidity and enhanced subtropical moisture divergence. This leads to a corresponding 
decrease in P–E (up to  >−1.5  mm/day; Figure  9a) and is consistent with a “wet-gets-wetter, dry-gets-drier” 
scenario in warmer climates. However, this scenario is partially compensated by a reduction in LTGs, here taken 
as the difference between 15°S and 15°N and 30°–60°N/S. Reduced LTGs lead to a reduction in the strength of 
the zonal-mean subtropical circulation (v)—that is, the Hadley circulation—and a relative increase in subtropi-
cal zonal-mean P-E (Figure 9b), particularly in the Southern Hemisphere where the strength of the Hadley Cell 
(Figure S10 in Supporting Information S1) systematically weakens with the LTG in all models (Figure 11e and 
Figure S12b in Supporting Information S1). The models differ more in the strength of the relationship between 
Hadley circulation changes and the LTG in the Northern Hemisphere (Figures S12d and S12f in Supporting 
Information S1), perhaps because of the complicating factor of inter-model differences in latitudinal ITCZ shift. 
The dynamical effect of weakened Hadley circulation is stronger in model simulations with weaker latitudinal 
temperature gradients (i.e., CESM and GFDL model simulations) and weaker in models with stronger latitudinal 
temperature gradients (e.g., HadCM3L) (Figure 9d and Figure S12b in Supporting Information S1). Therefore,  the 
DeepMIP models with the lowest LTGs (e.g., CESM and GFDL) are characterized by higher subtropical MAP 
estimates relative to pre-industrial. Intriguingly, those models with reduced LTGs most closely reproduce temper-
ature gradients (and GMST estimates) as reconstructed by proxies (Zhu et al., 2019; Figure 1 in Lunt et al., 2021). 
This implies that the early Eocene was likely characterized by a reduction in the strength of Hadley circulation. 
However, all DeepMIP models, including CESM and GFDL, show that the reduction in subtropical circulation 
(Figure 9d) is not sufficient to compensate fully for changes in atmospheric humidity (Figure 9c). As such, the 
subtropics are characterized by overall drier conditions in terms of P–E in the DeepMIP ensemble (Figure 9a).

Extrapolating from this, if early Eocene LTGs were even weaker than suggested by these models (Lunt et al., 2021), 
Hadley circulation-induced changes may have outcompeted the thermodynamic changes, leading to overall wetter 
subtropics on zonal average (e.g., Burls & Fedorov, 2017). Although proxy-model bias has decreased over recent 
years for certain DeepMIP models, early Eocene proxy compilations still suggest weaker global equator-to-pole 
LTGs (∼14–22°C; Gaskell et al., 2022; Evans et al., 2018; Cramwinckel et al., 2018) than those predicted in the 
DeepMIP model ensemble (∼18–25°C; Figure 1b in Lunt et al., 2021). However, proxy-derived LTG estimates 
remain associated with large uncertainties due to proxy-inherent uncertainties, the use of different input datasets, 
and/or the analysis of different time intervals (cf. GMST estimates; Inglis et al., 2020). Taken together, this high-
lights the important role of accurately reconstructing and modeling the meridional temperature gradient when 
interpreting past meridional rainfall patterns.

3.4. Proxy-Based Precipitation Estimates During the Early Eocene

Our proxy synthesis indicates that high-latitude regions were characterized by high MAP estimates, consist-
ent with previous results from the northern (Eberle & Greenwood, 2012; Salpin et al., 2019; Suan et al., 2017; 
West et al., 2015, 2020) and southern high-latitudes (Poole et al., 2005; Pross et al., 2012) (Figure 10). This is 
consistent with evidence for low-salinity sea surface conditions in the high northern latitudes near the termina-
tion of the EECO (∼49 Ma) (i.e., the Azolla interval), although this salinity signal might be strongly linked to 

 25724525, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004542 by U
niversity O

f B
ristol L

ibrary, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Paleoceanography and Paleoclimatology

CRAMWINCKEL ET AL.

10.1029/2022PA004542

13 of 21

paleogeographic change (Barke et al., 2012; Brinkhuis et al., 2006). Proxy estimates from more transient periods 
of warming (e.g., the PETM and Eocene Thermal Maximum 2; ETM2) provide additional support for high 
MAP in the Arctic (Pagani et al., 2006; Willard et al., 2019), the North Sea Basin (Collinson et al., 2003; Garel 
et al., 2013; Kender et al., 2012), and the southwest Pacific (Pancost et al., 2013; Sluijs et al., 2011). We note that 
in our compilation, early Eocene-aged CLAMP-derived MAP estimates from North America are much higher 
than most NLR estimates. CLAMP estimates are based on locally derived floral assemblages, whereas NLR 
estimates can reflect both locally derived floral elements but also floral elements transported over long distance 
(e.g., wind- or water-dispersed pollen). As a consequence, CLAMP estimates may reflect a bias toward wetter 
environments, whereas NLR estimates may be biased toward drier (upland) environments. The set of MAP esti-
mates from Antarctica based on wood physiognomy are also far higher than the other proxies (Poole et al., 2005). 
Due to the lack of wood physiognomic MAP estimates from other regions, it is unclear whether these values are 
representative of the Antarctic continent.

Early Eocene tropical and subtropical MAP estimates are also relatively high (>2–4  mm/day, Figure  10). 
Although proxy-derived subtropical MAP values imply wetter conditions during the early Eocene, we note that 
these estimates are biased toward regions with well-preserved floral assemblages and, by extension, relatively 

Figure 9. Subtropical moisture budget diagnostics show competing influence of atmospheric humidity and circulation in 
the subtropics (15°–30°N/S). (a) the relationship between changes in subtropical precipitation-evaporation (P−E) and global 
mean surface temperature (GMST), (b) the relationship between changes in subtropical P−E and the latitudinal temperature 
gradient (LTG) between 15°S and 15°N and 30°–60°N/S, (c) changes in subtropical P−E due to humidity-induced changes 
in the time-mean moisture transport divergence (i.e., thermodynamic effects), (d) changes in subtropical P−E due to 
circulation-induced changes in the time-mean moisture transport divergence (i.e., dynamic effects).
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wet regions. Subsequently, arid and semi-arid environments are likely under-sampled in our synthesis. Evidence 
from periods of superimposed warming during the Eocene suggests drier subtropics, with evidence for enhanced 
evapotranspiration in Tanzania during the onset of the PETM (Handley et al., 2012), drying in the continental 
interior (e.g., Bighorn Basin) during the body of the PETM (Kraus et al., 2013; Kraus & Riggins, 2007; Smith 
et al., 2007), and increased subtropical salinity in the central Pacific during ETM2 (Harper et al., 2017). Based 
on the sparsity of data for the early Eocene background state however, we cannot distinguish whether the lack of 
paleobotanical evidence for arid environments derives from sampling sparsity itself, from methodological bias, 
or from actual absence of such environments. Moving forward, we suggest that alternative proxies, for example, 

Figure 10. Proxy-based mean annual precipitation (MAP; mm/day) values overlayed on simulated MAP fields from the Deep-Time Model Intercomparison Project 
(DeepMIP) ensemble. (a) Zonal-mean MAP from all the DeepMIP-Eocene experiments (light colored lines) with the multi-model-mean as a bold line and the proxy 
estimate overlayed as symbols. See Figure S10 in Supporting Information S1 for individual model plots with simulated MAP values at the proxy locations rather than 
zonal-mean values. (b) MMM MAP for each DeepMIP-Eocene CO2 experiment with the reconstructed MAP estimates overlayed.
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clumped isotope-δ 18O analysis of pedogenic siderites (van Dijk et al., 2020), could help to reconstruct hydrolog-
ical change in arid and semi-arid environments where plant macrofossils are unlikely to be preserved, and the 
availability of plant-based terrestrial proxy data will therefore be limited or absent. These caveats will need to 
be addressed in the future to fully establish the fidelity with which the DeepMIP-Eocene models simulate the 
tropical and subtropical hydrological cycle response over land. In this study, we proceed by evaluating the models 
with our synthesis of paleobotanical MAP estimates.

3.5. Terrestrial Precipitation Data-Model Comparison

To explore whether the DeepMIP models realistically reproduce regional MAP patterns during the early 
Eocene, we employ the data-model comparison approach outlined in Section 2.2.3 using our new and published 
botanical-based MAP estimates. Although the “wet-gets-wetter, dry-gets-drier” response may not hold true over 
land (Byrne & O’Gorman, 2015), our terrestrial data-model comparison helps us assess overall model perfor-
mance. A previous site-by-site data-model comparison (Carmichael et al., 2016) suggested that the EoMIP models 
were able to reproduce key features of the hydrological cycle in the mid-latitudes (e.g., western US interior, 
central Europe), but modeled MAP estimates were typically lower than those from proxies in the high-latitudes 
(e.g., East Antarctica, SE Australia, Axel Heiberg). For the new DeepMIP-Eocene model-data comparison, we 
find a similar result (Figures 11 and 12). The MMM underestimates proxy-derived MAP in the high northern 
latitudes, especially at lower CO2 levels (Figure 11). We attribute this mismatch to the lack of polar amplification 
in certain models, especially at lower CO2 levels (e.g., HadCM3, COSMOS) (Lunt et al., 2021, Figure S11 in 
Supporting Information S1). At high CO2 values, the model-data bias for high-latitude MAP is smallest, down to 
−0.4 to −0.6 mm/day for the 6× and 9× CO2 simulations (Figure 12d). The mid latitudes are likewise associated 
with large data-model mismatches, with models simulating MAP values that are too low by ∼0.4–1.3 mm/day 
from a zonal-mean perspective, and a decrease in bias with increasing CO2 levels (Figure 12c). Moving to the 
subtropics, model-bias is likewise negative, with a large range between near-zero and −1.75, but without a clear 
intra- or inter-model improvement with CO2 levels. Finally, almost all models (expect for COSMOS) simulate 
too much precipitation in the tropics compared to the reconstructions, with positive biases of up to +1.5 mm/day, 
that remain similar or worsen with increasing CO2 for a given model (Figure 12a).

Comparing between models, proxy-model mismatches are lowest for CESM, GFDL, MIROC and NorESM in the 
subtropics, mid- and high latitudes (Figure 12; Figure S11 in Supporting Information S1) that is, the models with 
higher GMST estimates and lower LTGs (Lunt et al., 2021). These models overall simulate higher precipitation. 

Figure 11. Data-model comparison for the early Eocene. In each panel, the early Eocene multi-model-mean (MMM) mean annual precipitation (MAP) bias is shown 
for a given CO2 concentration. The root-mean-square error of the bias across all the sites is shown in black on the left. Lower values indicate a closer data-model 
agreement.
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They however do not outperform the other models in the tropical band (Figure 12a). From a regional viewpoint, in 
the mid-latitudes the MMM either underestimates MAP (e.g., western South America and Tibet) or overestimates 
MAP (e.g., western North America; Figure 11). As these mismatches lie close to major mountain ranges (e.g., 
Rocky Mountains, proto-Tibetan Plateau, Andes), it is possible that mismatches are due to topographic effects as 
a small offset in reconstructed paleolocation can make a large difference in reconstructed elevation. Additionally, 
the DeepMIP Eocene model resolution is coarse and the topography has inherent uncertainty, especially in the 
North American Cordillera and proto-Himalayas (Herold et al., 2014). In our MMM comparison, it should be 
noted that the composition of the model ensemble changes over the different CO2 levels in the MMM (cf. Table 
S1 in Supporting Information S1 and Figure 4). For instance, whereas the 3xCO2 experiment was performed with 
7 out of 8 DeepMIP models, only 3 models (CESM, GFDL, INMCM) were used for the 6× CO2 experiment, and 
only CESM ran a 9xCO2 simulation. For a more detailed analysis of regional hydroclimate in the DeepMIP simu-
lations, we refer the reader to Williams et al. (2022) and Reichgelt et al. (2022), for the African and Australian 
continent, respectively.

Figure 12. Zonally averaged model-data mean annual precipitation (MAP) bias for the (a) tropics (15°–15°N/S), (b) 
subtropics (15°–30°N/S), (c) mid latitudes (30°–60°N/S), and (d) high latitudes (60°–90°N/S). Panels (a–d) show the model-
data bias in mm/day for the different model simulations, sorted by CO2 forcing.

 25724525, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004542 by U
niversity O

f B
ristol L

ibrary, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Paleoceanography and Paleoclimatology

CRAMWINCKEL ET AL.

10.1029/2022PA004542

17 of 21

In summary, our results indicate that the models with higher GMST and weaker LTGs are able to better simu-
late the global and regional scale hydrological cycle (Figure 12). Overall, our integrated data-model approach 
suggests that the early Eocene was characterized by a thermodynamically dominated hydrological response to 
warming within the mid and high latitudes. Enhanced polar amplified warming in response to increased CO2 
forcing leads to an improved high-latitude model-proxy fit with enhanced local evaporation and eddy mois-
ture transport convergence increasing precipitation (Figures 12c and 12d; Figures S6 and S11 in Supporting 
Information  S1). Furthermore, the DeepMIP-Eocene models on average simulate higher precipitation in the 
tropics relative to the proxy data (Figure 12a and Figure S11 in Supporting Information S1), with increased 
tropical precipitation driven by enhanced local evaporation and time-mean moisture convergence. While several 
DeepMIP-Eocene models simulate a narrowing of the ITCZ, an ITCZ narrowing signal is not clearly evident 
within the proxy data (Figure 10). Lastly, in the subtropical latitudes, the models differ widely in their response 
leading to varying degrees of model-data bias (Figure 12b). Weakened Hadley circulation in response to weaker 
LTGs could have offset thermodynamic subtropical drying and supported regional wetting, as seen to some 
extent in the GFDL and CESM models (Figure 12b and Figure S10 in Supporting Information S1). Although the 
lack of proxy evidence for arid subtropical regions in the early Eocene background state might be caused by a bias 
of the sparsely available data to wet regions, this conspicuous absence of evidence at least suggests regionally 
wetter conditions.

4. Conclusions
Here we use the DeepMIP model simulations to investigate global and zonal mean rainfall patterns during 
the early Eocene (∼56.0–47.8 million years ago). Across the DeepMIP ensemble, higher GMST estimates 
are associated with higher global mean MAP estimates, with an overall 2.4% increase in global MAP per 
degree of warming. At higher temperatures, the DeepMIP model simulations indicate that - on average - 
the low- (0°–15°N/S) and high-latitudes (>60°N/S) are characterized by positive P–E values (wetter condi-
tions). While the subtropics (15°–30°N/S) are characterized by negative P–E values (drier conditions), there 
is large inter-model variability in subtropical MAP due to the competing influence of humidity (i.e., thermo-
dynamic changes) and atmospheric circulation (i.e., dynamic changes) in this region. Overall, the DeepMIP  
models underestimate MAP estimates in the subtropics and mid-to-high latitudes and overestimate MAP in 
the deep tropics. The DeepMIP model simulations that exhibit higher subtropical MAP estimates relative to 
pre-industrial are characterized by weaker latitudinal temperature gradients and a reduction in subtropical 
moisture divergence. This acts to offset drier conditions, particularly in the Southern Hemisphere where the 
strength of the Hadley Cell systematically weakens with the latitudinal temperature gradient in all models. 
Crucially, the models with reduced latitudinal temperature gradients (e.g., GFDL, CESM) more closely 
reproduce our compilation of proxy-derived precipitation estimates and other key climate metrics. Taken 
together, this implies weaker subtropical circulation in the early Eocene. However, changes in subtropical 
moisture divergence were not sufficient to induce subtropical wetting in the models. Extrapolating from 
this, if early Eocene latitudinal temperature gradients were even weaker than suggested by these models, 
circulation-induced changes may have outcompeted the thermodynamic changes, leading to overall wetter 
subtropics—consistent with sparsely available proxy data. Taken together, our study highlights the impor-
tance of accurately reconstructing and modeling the meridional temperature gradient when interpreting past 
subtropical rainfall patterns.
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