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The Cretaceous Thermal Maximum is marked by high sur-
face and deep-water temperatures1,2 and rhythmic marine 
sedimentation with periodic changes in carbon burial, bot-

tom water oxygenation, δ13C and carbonate δ18O (refs. 1,3–6). This 
period also includes a prominent Ocean Anoxic Event (OAE2) and 
has emerged as a model case study for the integration of orbital vari-
ability with high-resolution geochemical time-series data3. Analysis 
of sedimentary records from the proto-North Atlantic (NAT)3–6 and 
the Western Interior Seaway7,8 reveals that most of the variability in 
geochemical data occurs with a cycle length of about 37–50 kyr and 
might therefore be related to obliquity forcing (axial tilt). Several 
hypotheses have been advanced to explain how obliquity might 
affect low-latitude sedimentary records from the mid-Cretaceous 
ocean despite the influence of this orbital parameter on low-lati-
tude insolation being very small9. These include obliquity-induced 
changes in coastal/equatorial upwelling10, global ocean circulation3, 
continental hydrology and weathering11,12 and carbon storage in 
permafrost soils13,14. However, none of these ideas has been substan-
tiated and supported by carbon cycle modelling.

Here, we present a new redox-resolving biogeochemical ocean 
model (REDBIO) that generates the 37–50 kyr cycles observed 
in the geological record without invoking any of the orbital forc-
ing hypotheses outlined above. In this model, global inventories of 
nutrients used by phytoplankton (phosphate, nitrate, iron) depend 
on the oxygenation of intermediate and deep waters. Nitrate is con-
sumed under low-oxygen conditions by pelagic and benthic denitri-
fication15 whereas the release of dissolved phosphate and iron from 
sediments is promoted when bottom waters turn anoxic16–18. Sulfide 
accumulation in the water column is caused by pelagic and benthic 
sulfate reduction, and induces pyrite formation and a decline in ben-
thic iron release19,20. In a mid-Cretaceous continent–ocean configu-
ration with a poorly ventilated NAT and Tethys, feedbacks between 
ocean productivity, respiration and benthic nutrient release create 
self-sustained oscillations with 37–50 kyr cycles in ocean productiv-
ity, seawater redox, δ13C and organic carbon accumulation. These 

periodic changes are not a predefined model feature but emerge as 
a result of biogeochemical feedbacks over a significant portion of 
the model parameter space. Changes in marine export production 
(EP) created by these cycles are strong enough to induce changes in 
the atmospheric partial pressure of CO2 (pCO2

) and global climate.

The marine redox see-saw
A University of Victoria (UVic) Earth system model with a mid-
Cretaceous continent configuration was set up and run to steady 
state over a range of pCO2

 values. A comprehensive description 
of the UVic model is given in the Supplementary Information 
(Supplementary Section 1, Supplementary Figs.  1–7). The UVic 
simulations yield dissolved oxygen distributions at intermediate 
water depths (Supplementary Fig.  5) that are largely consistent 
with the proxy record (Supplementary Fig. 6) and previous model 
results for the Cretaceous Thermal Maximum21,22. Intermediate 
waters are oxygen-depleted at low latitudes in the NAT, Tethys and 
Eastern Equatorial Panthalassa, and are better ventilated at higher 
latitudes and in most of the Panthalassa Ocean21,23. Dissolved oxy-
gen concentrations decline with increasing pCO2

 as oxygen solubility 
is diminished by the concomitant rise in sea surface temperatures 
(Supplementary Fig.  7). The numerical costs of the UVic model 
are too high to simulate the evolution of the dynamic phosphate 
inventory on orbital timescales. A box model (REDBIO) was there-
fore derived from UVic model outputs (annual mean water fluxes 
and temperatures) to study how variable P inputs and dynamic 
phosphate inventories may affect ocean productivity and oxy-
genation (Supplementary Fig.  8). REDBIO was integrated until a  
new steady state was attained by applying a constant pCO2

 of 500 ppm 
and a range of riverine phosphorus fluxes (Fig. 1) that correspond 
to phosphate residence times of 13–29 kyr (global marine P inven-
tory/riverine P flux)17,24. Steady-state EP increases with riverine  
P input while oxygen concentrations in intermediate and deep 
waters decline due to the concomitant rise in respiration21,25. At 
intermediate riverine P fluxes (107–125 Gmol yr−1), which result in 
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global mean phosphate concentrations close to 2 µM, an interest-
ing behaviour emerges. Under these conditions, the model does not 
converge to a steady state but generates regular oscillations in ocean 
oxygenation and productivity with constant amplitudes but variable 
cycle lengths centred at about 40 kyr (Fig. 1).

This internal oscillation is driven by redox transitions in the 
NAT (Fig. 2). According to the REDBIO model, this poorly venti-
lated basin oscillates between a state in which intermediate waters 
are enriched in dissolved iron released from reducing sediments18,19, 
and an euxinic state26 in which dissolved sulfide accumulates in 
intermediate waters and benthic iron fluxes are diminished by 
sedimentary pyrite precipitation20. The ratio between pyrite-bound 
iron (FePy) and highly reactive iron (FeHR) is commonly used as a 
proxy to reconstruct redox conditions; a moderate FePy /FeHR ratio 
(<0.8) is interpreted to indicate ‘ferruginous’ (Fe-rich) conditions, 
whereas FePy /FeHR > 0.8 indicates euxinia19. Ratios of FePy to FeHR 
calculated by REDBIO are consistent with this concept and with 
independent iron speciation data from the NAT (Fig.  2j)12. They 
show an oscillation between ferruginous and euxinic states that is 
maintained by the redox contrast between the NAT and better oxy-
genated ocean basins such as the Panthalassa Ocean. In most parts 
of the Panthalassa, primary and EP are limited by iron because the 
large and strongly ventilated Panthalassa Ocean (Supplementary 
Fig. 4) receives little iron from land and from seafloor sediments. 
Phytoplankton in the Panthalassa Ocean depend on dissolved iron 
to thrive, which is released from sediments in the reducing NAT and 
transported into the Panthalassa Ocean by ocean currents. Hence, 
phytoplankton in the Panthalassa flourish when the NAT is enriched 
in dissolved Fe, but decline when the iron supply is diminished by 
sulfide precipitation in the NAT. The NAT is in turn oxygenated 
by currents that originate in the Panthalassa. Low productivity and 

respiration in the Panthalassa therefore promote the oxygenation of 
the NAT until the redox state of this reducing ocean basin swings 
back from euxinic to Fe-rich conditions. The resulting iron fertil-
ization of the Panthalassa leads to a decline in the lateral oxygen 
supply from this basin to the NAT until the NAT falls back into eux-
inia. In this way, a redox see-saw is established (Fig. 3), maintaining 
periodic changes in ocean oxygenation and productivity across the 
global ocean (Supplementary Figs. 9 and 10).

The cycle length is controlled by concomitant changes in dis-
solved phosphate, which has an ocean residence time of about 25 kyr 
in the model ocean. As reactive N is provided by widespread nitrogen 
fixation27, the productivity of the Fe-rich NAT is ultimately limited 
by phosphate (Fig. 2). The global dissolved phosphate inventory is 
largely controlled by P burial on the broad inner shelves of the NAT 
and the Tethys that remain oxygenated over the entire redox cycle22,28. 
As the NAT and the Tethys are less productive when intermediate 
and deep waters are enriched in Fe, rain rates of marine P to the 
shelf and the resulting shelf P burial fluxes are diminished during 
these phases (Supplementary Fig.  11). Dissolved phosphate slowly 
increases when these restricted basins are enriched in Fe because the 
riverine P input exceeds the P burial flux (Supplementary Fig. 11). 
The resulting rise in dissolved phosphate promotes EP, P burial, res-
piration and sulfate reduction in these basins until their redox state 
descends into euxinia. Under euxinic conditions, dissolved phosphate 
slowly declines because P burial on the shelf exceeds the riverine flux 
(Supplementary Fig. 11). The decline in dissolved P and EP continue 
until the NAT swings back into the Fe-rich state (Fig. 3). The oscil-
lation occurs only over a certain range of riverine P fluxes (Fig. 1). 
Higher riverine inputs (>125 Gmol yr−1) create permanent euxinia in 
the poorly ventilated basins, whereas lower fluxes (<107 Gmol yr−1) 
inhibit the onset of euxinia.
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Fig. 1 | Response of the REDBIO model to changes in the riverine P flux. a–f, Global mean concentrations (a–e) and global EP (f) attained after a 
simulation period of 500 kyr at constant pCO2(500 ppm) for a range of riverine phosphorus fluxes (FRDP). The grey shading indicates the region where 
REDBIO does not converge to a steady state, but instead generates regular oscillations (107–125 Gmol yr–1). The minimum and peak values attained over 
these cycles are indicated as blue squares and red dots, respectively. a, Dissolved oxygen concentration and cycle length of the oscillation (CyL).  
b, Dissolved phosphate concentrations. c, Dissolved reactive nitrogen concentrations (the sum of nitrate and ammonium). d, Dissolved iron concentration 
(Fetot, the sum of ferrous and ferric iron). e, Total dissolved sulfide concentrations. f, EP of POC at 240 m water depth.
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of the NAT deposited at 240–1,240 m water depth. FePy /FeHR data are from the Tarfaya Basin located at the eastern boundary of the NAT12. Sediment 
depths12 were converted into model time by applying a linear sedimentation rate of 3.0 cm kyr−1 (ref. 4). Euxinic and Fe-rich periods in the NAT are shaded 
yellow and red, respectively.
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Interpretation of the ferruginous proxy signature
Our REDBIO model also helps to better understand the nature of 
the ocean’s redox state corresponding to a ferruginous sedimentary 
proxy signature12,29–32. In our modelling scenarios, a ferruginous 
signature (FePy /FeHR < 0.8) corresponds to a water column with 
elevated dissolved Fe concentrations (up to 0.07 µM). However, this 
signature does not imply that Fe reduction is the dominant organic 
carbon respiration pathway33. Instead, oxygen and nitrate are the 
most important electron acceptors under these conditions, whereas 
sulfate reduction is the dominant process under euxinic conditions, 
both in the water column and in the sediments (Supplementary 
Section 3, Supplementary Table. 4). Dissimilatory iron reduction 
is limited by iron supply—that is, the rain of reactive ferric iron 
through the water column towards the seabed. Even though the 
rain rate of particulate ferric iron is enhanced by the iron redox 
shuttle at the oxic–anoxic interface of the water column, the sup-
ply of ferric iron is too low to contribute significantly to organic 
matter degradation, both under ferruginous and euxinic proxy sig-
natures18. Vivianite (iron phosphate) formation and the scavenging 
of phosphate by ferric iron particles30,34 have no significant effect 
on dissolved phosphate due to the moderate dissolved iron concen-
tration in the water column (Fig. 2d, Supplementary Section 4). In 
REDBIO, Fe-rich conditions develop in a narrow redox window in 
which dissolved oxygen and nitrate concentrations are high enough 
to suppress sulfate reduction but too low to remove all iron from 
the water column, which is constantly replenished by benthic iron 
release. In this respect, the Fe-rich conditions in our modelling sce-
narios are similar to the redox state observed in modern oxygen 
minimum zones35,36.

Impact of the marine redox see-saw on atmospheric pCO2
Another simulation was conducted to explore the effect of the 
redox see-saw on atmospheric pCO2

. The redox-related changes 
in ocean productivity are strong enough to create pCO2

 changes of 
up to 300 ppm, which significantly affects global climate (Fig. 4). 

Additional feedbacks arise in these simulations as ocean circu-
lation, sea surface temperatures, weathering rates and riverine  
P fluxes are governed by atmospheric pCO2

. As a consequence, the 
cycle length increases from 37 kyr at constant pCO2

 (500 ppm) to 
about 50 kyr for the REDBIO model with dynamic pCO2

 (Fig. 4). 
Owing to pCO2

-driven changes in chemical weathering, the river-
ine P flux varies dynamically between 113 and 121 Gmol yr−1—
close to the prescribed value applied in the previous simulation 
(116 Gmol yr−1) and within the window where stable oscillations 
occur (Fig. 1). Atmospheric pCO2

 change is induced by the redox-
controlled biological pump (EP) transferring CO2 into the ocean’s 
interior. The increase in global EP induced by Fe-rich conditions 
in the NAT (Fig.  4) is responsible for the positive correlation 
between pCO2

 and ocean oxygenation (Fig.  4). UVic simulations 
with a constant P inventory show a negative correlation between 
these parameters due to the decrease in oxygen solubility in surface 
waters under high pCO2

 (Supplementary Fig. 7). Although changes 
in solubility and vertical mixing are considered in REDBIO, they 
are overwhelmed by strong biogeochemical feedbacks related 
to the dynamic P inventory22,37. Hence, the relationship between 
ocean oxygenation and atmospheric pCO2

 is governed by the redox 
see-saw rather than physical changes in water circulation and 
temperature. The redox see-saw also produces a negative correla-
tion between the global export and burial of particulate organic  
carbon (BPOC). Most BPOC takes place on the broad shelves  
of the anoxic NAT and Tethys basins, whereas global EP is domi-
nated by the better oxygenated ocean basins with narrower conti-
nental shelves and hence lower particulate organic carbon (POC) 
accumulation (Fig. 4).

High-resolution δ13C records for CaCO3 and POC from the mid-
Cretaceous NAT show signatures that are consistent with our model 
results (Fig.  4h). They feature high δ13C values in bioturbated, 
POC-depleted sediments that were probably deposited during 
non-euxinic phases, and low values in laminated, POC-rich sedi-
ments accumulated under euxinic conditions6,38. These trends are 
surprising, because the spread of euxinia in the NAT should lead 
to a steepening of the vertical δ13C DIC gradient and an increase in 
surface water δ13C DIC, pelagic δ13C for CaCO3 and POC. However, 
global EP decreases when the NAT turns euxinic (Fig. 4b) due to 
the concomitant decrease in dissolved iron concentrations and 
decline in EP in the Panthalassa Ocean (Fig. 4g). Hence, δ13C values 
in the Panthalassa surface ocean are low when the NAT attains a 
euxinic state (Fig. 4i). The δ13C records for CaCO3 and POC in the 
NAT reflect these changes, which are transmitted via rapid hori-
zontal surface water exchange with the adjacent Panthalassa Basin 
(Supplementary Fig. 13) and are caused by the redox see-saw oper-
ating in the mid-Cretaceous ocean.

Response to orbital forcing
Further simulations were conducted to study the response of 
REDBIO to external orbital forcing when the global riverine P 
flux is assumed to be modulated by eccentricity (Supplementary 
Information, Supplementary Figs.  16–18). The power spectra of 
organic carbon burial rates are very similar to those observed in 
the NAT3,10,23 when the global riverine P flux is allowed to change by 
up to ±13% due to eccentricity forcing (Fig. 5). The wavelengths of 
major peaks observed in the model results (435 kyr, 94 kyr, 49 kyr, 
39 kyr, 21 kyr) largely correspond to those predicted by orbital 
theory (long eccentricity E1: 405 kyr, short eccentricity E3: 97 kyr, 
obliquity O1: 49–50 kyr, obliquity O2: 38–39 kyr, precession P1: 
22 kyr)3,23,39,40. As the model was forced only by eccentricity (Fig. 5), 
the peaks at shorter wavelengths resembling obliquity and preces-
sion signals are not preset by external orbital forcing, but generated 
by the response of the internal redox see-saw to eccentricity forcing.

Our redox-resolving REDBIO model shows that 37–50 kyr cycles 
that were previously ascribed to obliquity forcing can be generated 
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Fig. 3 | The redox see-saw in the mid-Cretaceous ocean. a, The NAT 
is enriched in dissolved Fe when nitrogen fixation, EP, P burial in shelf 
sediments and dissimilatory sulfate reduction are limited by low phosphate 
concentrations. Fe-rich conditions in the NAT induce high iron fluxes into the 
iron-limited Panthalassa Basin, where dissolved oxygen declines due to the 
resulting increase in EP and respiration. b, The NAT is euxinic when EP and 
sulfate reduction are promoted by high phosphate concentrations. Iron fluxes 
from the NAT and respiration in the Panthalassa are diminished when the NAT 
is euxinic. The lengths of the arrows indicate the fluxes of iron and oxygen. 
When tipping from b to a, the NAT is laterally ventilated by oxygen-bearing 
water masses originating from the Panthalassa. The ventilation increases 
when the NAT is euxinic due to the reduced iron flux and the resulting 
oxygen increase in the Panthalassa. The NAT switches from euxinic to Fe-rich 
conditions because sulfate reduction is suppressed by the enhanced oxygen 
supply from the Panthalassa and by the enhanced burial of phosphorus in 
shelf sediments. When tipping from a to b, the NAT does not remain in the 
Fe-rich state but falls back into euxinia because Fe-rich conditions in the NAT 
lead to a decline in the oxygen supply from the Panthalassa and an increase in 
the phosphate inventory due to the decline in shelf burial.
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by the internal nonlinear dynamics of the marine biogeochemical 
system. Our modelling reveals that the enigmatic dominance of this 
signal over the Cretaceous Thermal Maximum is probably caused 
by marine redox feedbacks that induce regular oscillations between 
ferruginous and euxinic conditions in major ocean basins and drive 
periodic changes in atmospheric pCO2

. This marine redox see-saw 
may also have been active during other geological periods as ferrugi-
nous/euxinic proxy signatures have been documented in geological 
records that cover large parts of Earth’s history19,29,31. Our findings 
support results of previous modelling studies showing that biogeo-
chemical feedbacks may generate oscillations in carbon cycling and 
global climate41–43, and confirm that an improved understanding of 

the nonlinear response of the Earth system to external forcing is 
required to unravel the geological record.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41561-019-0359-x.
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Methods
A Cretaceous UVic Earth System Climate Model was set up to simulate the 
distribution of dissolved oxygen in the global ocean over a range of pCO2values 
(500, 1,200, 1,800 and 2,400 ppm) assuming constant phosphate and alkalinity 
inventories. The model was run over a period of 8 kyr for each pCO2

 value to reach 
a steady state. The model consists of an ocean general circulation model (Modular 
Ocean Model, Version 2) with a nutrient–phytoplankton–zooplankton–detritus 
model44 coupled to a vertically integrated two-dimensional energy–moisture balance 
model of the atmosphere, a dynamic–thermodynamic sea-ice model, a dynamic 
global land and vegetation model and a CaCO3 sediment model45,46. The model is 
driven by seasonal variations in solar insolation at the top of the atmosphere and 
seasonally varying wind stress and wind fields for each pCO2 value47. The coupled 
model has a 1.8° × 1.8° horizontal resolution and conserves energy, water and carbon 
without the use of flux adjustment48. A comprehensive description of the Cretaceous 
UVic configuration is included in the Supplementary Section 1.

The Cretaceous ocean was separated into 12 basins to allow integration over 
longer timescales (Supplementary Fig. 8). Surface water (0–240 m), intermediate 
water (240–1,240 m) and deep water boxes (>1,240 m) were defined for each 
of these basins. Surface temperatures, volumes, seafloor areas and bidirectional 
water fluxes across each interface of the 36 ocean boxes were defined using output 
from the steady-state UVic simulations. Water fluxes and temperatures were 
calculated as function of atmospheric pCO2 using a linear interpolation of UVic 
outputs (annual means). REDBIO was embedded in this fully dynamic ocean 
box model. It considers that global inventories of all dissolved tracers (oxygen, 
nitrate, ammonium, phosphate, ferric iron, ferrous iron, total dissolved sulfide, 
dissolved inorganic carbon (12C and 13C) and total alkalinity) change over time due 
to weathering inputs from land, CO2 and O2 fluxes across the ocean–atmosphere 
interface, nitrogen fixation, denitrification and redox-dependent fluxes at the 
seabed. Feedbacks between ocean productivity, respiration, benthic fluxes and 
nutrient contents create internal oscillations with cycle lengths of about 37–50 kyr. 
This nonlinear behaviour arises because nutrient contents (phosphate, nitrate, 
ammonium and dissolved iron) depend on the oxygenation of intermediate 
and deep waters, whereas oxygenation is itself a function of nutrient abundance 
that controls ocean productivity and respiration. Sensitivity tests showed that 
the oscillations are a robust feature of the model that persists over a significant 
range of riverine P fluxes (Fig. 1), ventilation rates and kinetic parameter values 
(Supplementary Section 5). Continental weathering and degassing fluxes, surface 
temperatures and atmospheric pCO2

 were simulated using GEOCARB process 

formulations49,50 whereas marine δ13C values were calculated as described in a 
previous box model51. A detailed description of the REDBIO model is included in 
the Supplementary Section 2.
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